These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7947843)

  • 1. An irregularity in the transmembrane domain helix correlates with the rate of insulin receptor internalization.
    Li SC; Deber CM; Shoelson SE
    Biochemistry; 1994 Nov; 33(47):14333-8. PubMed ID: 7947843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing transmembrane domain helicity accelerates insulin receptor internalization and lateral mobility.
    Goncalves E; Yamada K; Thatte HS; Backer JM; Golan DE; Kahn CR; Shoelson SE
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5762-6. PubMed ID: 8390680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of an "alpha-helix-extended segment-alpha-helix" conformation of the sixth transmembrane domain in DMT1.
    Xiao S; Li J; Wang Y; Wang C; Xue R; Wang S; Li F
    Biochim Biophys Acta; 2010 Aug; 1798(8):1556-64. PubMed ID: 20388494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of glycine residues on peptide conformation in membrane environments.
    Li SC; Deber CM
    Int J Pept Protein Res; 1992; 40(3-4):243-8. PubMed ID: 1478781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane domain mediated self-assembly of major coat protein subunits from Ff bacteriophage.
    Melnyk RA; Partridge AW; Deber CM
    J Mol Biol; 2002 Jan; 315(1):63-72. PubMed ID: 11771966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SDS micelles as a membrane-mimetic environment for transmembrane segments.
    Tulumello DV; Deber CM
    Biochemistry; 2009 Dec; 48(51):12096-103. PubMed ID: 19921933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR.
    Zazrin H; Shaked H; Chill JH
    Biochim Biophys Acta; 2014 Mar; 1838(3):784-92. PubMed ID: 24192053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the transmembrane domain of the insulin receptor in detergent micelles.
    Li Q; Wong YL; Kang C
    Biochim Biophys Acta; 2014 May; 1838(5):1313-21. PubMed ID: 24440425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CD study of uncoupling protein-1 and its transmembrane and matrix-loop domains.
    Jelokhani-Niaraki M; Ivanova MV; McIntyre BL; Newman CL; McSorley FR; Young EK; Smith MD
    Biochem J; 2008 May; 411(3):593-603. PubMed ID: 18237274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, assembly, and topology of the G185R mutant of the fourth transmembrane domain of divalent metal transporter.
    Li F; Li H; Hu L; Kwan M; Chen G; He QY; Sun H
    J Am Chem Soc; 2005 Feb; 127(5):1414-23. PubMed ID: 15686373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-inserted conformation of transmembrane domain 4 of divalent-metal transporter.
    Li H; Li F; Sun H; Qian ZM
    Biochem J; 2003 Jun; 372(Pt 3):757-66. PubMed ID: 12646040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the transmembrane domain and flanking amino acids in internalization and down-regulation of the insulin receptor.
    Yamada K; Carpentier JL; Cheatham B; Goncalves E; Shoelson SE; Kahn CR
    J Biol Chem; 1995 Feb; 270(7):3115-22. PubMed ID: 7852393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity.
    Drin G; Mazel M; Clair P; Mathieu D; Kaczorek M; Temsamani J
    Eur J Biochem; 2001 Mar; 268(5):1304-14. PubMed ID: 11231282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a polar amino acid substitution on helix formation and aggregate size along the detergent-induced peptide folding pathway.
    Alvares RD; Tulumello DV; Macdonald PM; Deber CM; Prosser RS
    Biochim Biophys Acta; 2013 Feb; 1828(2):373-81. PubMed ID: 23031573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function studies of analogues of parathyroid hormone (PTH)-1-34 containing beta-amino acid residues in positions 11-13.
    Peggion E; Mammi S; Schievano E; Silvestri L; Schiebler L; Bisello A; Rosenblatt M; Chorev M
    Biochemistry; 2002 Jun; 41(25):8162-75. PubMed ID: 12069609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of native-like oligomerization states in transmembrane segment peptides: application to the Escherichia coli aspartate receptor.
    Melnyk RA; Partridge AW; Deber CM
    Biochemistry; 2001 Sep; 40(37):11106-13. PubMed ID: 11551208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study.
    Chupin V; Killian JA; Breg J; de Jongh HH; Boelens R; Kaptein R; de Kruijff B
    Biochemistry; 1995 Sep; 34(36):11617-24. PubMed ID: 7547893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation of a protein kinase C substrate NG(28-43), and its analog in aqueous and sodium dodecyl sulfate micelle solutions.
    Chang DK; Chien WJ; Arunkumar AI
    Biophys J; 1997 Feb; 72(2 Pt 1):554-66. PubMed ID: 9017186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.