These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7947897)

  • 1. Enzymes II of the phospho enol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport.
    Lengeler JW; Jahreis K; Wehmeier UF
    Biochim Biophys Acta; 1994 Nov; 1188(1-2):1-28. PubMed ID: 7947897
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of the PEP: carbohydrate phosphotransferase system in the regulation of bacterial metabolism.
    Postma PW; Broekhuizen CP; Geerse RH
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):69-80. PubMed ID: 2699253
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of sugar uptake and efflux in gram-positive bacteria.
    Reizer J
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):149-56. PubMed ID: 2699246
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants.
    Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH
    J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system.
    Robillard GT; Broos J
    Biochim Biophys Acta; 1999 Jul; 1422(2):73-104. PubMed ID: 10393270
    [No Abstract]   [Full Text] [Related]  

  • 6. Inducer exclusion and the regulation of sugar transport.
    Saier MH; Crasnier M
    Res Microbiol; 1996; 147(6-7):482-9. PubMed ID: 9084759
    [No Abstract]   [Full Text] [Related]  

  • 7. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
    Deutscher J; Francke C; Postma PW
    Microbiol Mol Biol Rev; 2006 Dec; 70(4):939-1031. PubMed ID: 17158705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of proteins of the phosphotransferase system and of 6-phospho-beta-glycosidases in gram-positive bacteria.
    Hengstenberg W; Kohlbrecher D; Witt E; Kruse R; Christiansen I; Peters D; Pogge von Strandmann R; Städtler P; Koch B; Kalbitzer HR
    FEMS Microbiol Rev; 1993 Sep; 12(1-3):149-63. PubMed ID: 8398213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sialic acid, serendipity, and sugar transport: discovery of the bacterial phosphotransferase system.
    Roseman S
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):3-11. PubMed ID: 2699250
    [No Abstract]   [Full Text] [Related]  

  • 10. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism.
    Vadeboncoeur C; Pelletier M
    FEMS Microbiol Rev; 1997 Feb; 19(3):187-207. PubMed ID: 9050218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate transport in bacteria.
    Dills SS; Apperson A; Schmidt MR; Saier MH
    Microbiol Rev; 1980 Sep; 44(3):385-418. PubMed ID: 6999324
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of the N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system produced by proteolytic digestion.
    Lee BR; Lecchi P; Pannell L; Jaffe H; Peterkofsky A
    Arch Biochem Biophys; 1994 Jul; 312(1):121-4. PubMed ID: 8031118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria.
    Saier MH
    J Cell Biochem; 1993 Jan; 51(1):62-8. PubMed ID: 8432744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli.
    Reichenbach B; Breustedt DA; Stülke J; Rak B; Görke B
    J Bacteriol; 2007 Jul; 189(13):4603-13. PubMed ID: 17449611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phosphoenolpyruvate-dependent phosphotransferase system: a central feature of carbohydrate accumulation by enteric bacteria.
    Mitchell WJ
    Microbiol Sci; 1985 Nov; 2(11):330-4, 339. PubMed ID: 3939989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How carbohydrates cross the lipid membrane of bacterial cells.
    Kornberg HL
    Curr Top Cell Regul; 1992; 33():49-63. PubMed ID: 1499344
    [No Abstract]   [Full Text] [Related]  

  • 17. Hierarchical control versus autoregulation of carbohydrate utilization in bacteria.
    Gunnewijk MG; van den Bogaard PT; Veenhoff LM; Heuberger EH; de Vos WM; Kleerebezem M; Kuipers OP; Poolman B
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):401-13. PubMed ID: 11361071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of carbon and nitrogen metabolism.
    Charbit A
    Res Microbiol; 1996; 147(6-7):513-8. PubMed ID: 9084763
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria.
    Postma PW; Lengeler JW
    Microbiol Rev; 1985 Sep; 49(3):232-69. PubMed ID: 3900671
    [No Abstract]   [Full Text] [Related]  

  • 20. Two open reading frames adjacent to the Escherichia coli K-12 transketolase (tkt) gene show high similarity to the mannitol phosphotransferase system enzymes from Escherichia coli and various gram-positive bacteria.
    Sprenger GA
    Biochim Biophys Acta; 1993 Aug; 1158(1):103-6. PubMed ID: 8353127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.