These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 7947900)

  • 1. Anomalous response of oxonol-V to membrane potential in mitochondrial proton pumps.
    Ahmed I; Krishnamoorthy G
    Biochim Biophys Acta; 1994 Nov; 1188(1-2):131-8. PubMed ID: 7947900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxonol-V as a probe of chromaffin granule membrane potentials.
    Scherman D; Henry JP
    Biochim Biophys Acta; 1980 Jun; 599(1):150-66. PubMed ID: 7397145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation.
    Cooper CE; Bruce D; Nicholls P
    Biochemistry; 1990 Apr; 29(16):3859-65. PubMed ID: 2162199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the membrane potential generated by complex I in submitochondrial particles.
    Ghelli A; Benelli B; Esposti MD
    J Biochem; 1997 Apr; 121(4):746-55. PubMed ID: 9163527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart submitochondrial particles.
    Smith JC; Chance B
    J Membr Biol; 1979; 46(3):255-82. PubMed ID: 233819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, structure determination, spectral properties, and energy-linked spectral responses of the extrinsic probe oxonol V in membranes.
    Smith JC; Russ P; Cooperman BS; Chance B
    Biochemistry; 1976 Nov; 15(23):5094-105. PubMed ID: 990268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles.
    Smith JC; Hallidy L; Topp MR
    J Membr Biol; 1981; 60(3):173-85. PubMed ID: 7253009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of response of potential-sensitive dyes studied by time-resolved fluorescence.
    Das TK; Periasamy N; Krishnamoorthy G
    Biophys J; 1993 Apr; 64(4):1122-32. PubMed ID: 19431883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ; Bersch B
    Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent spectral response of oxonol VI in an ATP-Pi exchange complex.
    Kiehl R; Hanstein WG
    Biochim Biophys Acta; 1984 Aug; 766(2):375-85. PubMed ID: 6235853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL; Thayer WS
    J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of oxonol V fluorescence in submitochondrial particles.
    Freedman JC; Novak TS; Penefsky HS; Stein WD
    Ann N Y Acad Sci; 1992 Nov; 671():493-6. PubMed ID: 1337685
    [No Abstract]   [Full Text] [Related]  

  • 13. On the role of factor B and oligomycin on generation and discharge of the proton gradient.
    Hughes JB; Joshi S; Sanadi DR
    J Biol Chem; 1982 Jun; 257(12):6697-701. PubMed ID: 7085595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H(+)-ATPase reconstituted into vesicles.
    Holoubek A; Vecer J; Opekarová M; Sigler K
    Biochim Biophys Acta; 2003 Jan; 1609(1):71-9. PubMed ID: 12507760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles.
    Clarke RJ; Apell HJ
    Biophys Chem; 1989 Nov; 34(3):225-37. PubMed ID: 2611347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells.
    Epps DE; Wolfe ML; Groppi V
    Chem Phys Lipids; 1994 Feb; 69(2):137-50. PubMed ID: 8181103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic regulation of proton chemical (pH) and electrical gradients in lung lamellar bodies.
    Wadsworth SJ; Spitzer AR; Chander A
    Am J Physiol; 1997 Aug; 273(2 Pt 1):L427-36. PubMed ID: 9277456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of the bovine mitochondrial bc1 complex reveals critical acidic residues involved in the proton pumping activity.
    Cocco T; Di Paola M; Papa S; Lorusso M
    Biochemistry; 1998 Feb; 37(7):2037-43. PubMed ID: 9485330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions.
    Blinova K; Carroll S; Bose S; Smirnov AV; Harvey JJ; Knutson JR; Balaban RS
    Biochemistry; 2005 Feb; 44(7):2585-94. PubMed ID: 15709771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IgE receptor-mediated depolarization of rat basophilic leukemia cells measured with the fluorescent probe bis-oxonol.
    Mohr FC; Fewtrell C
    J Immunol; 1987 Mar; 138(5):1564-70. PubMed ID: 2949017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.