These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7947917)
1. A transmembrane potential does not affect the vertical location of charged lipid spin labels with respect to the surface of a phosphatidylcholine bilayer. Jo E; Boggs JM Biochim Biophys Acta; 1994 Nov; 1195(2):245-51. PubMed ID: 7947917 [TBL] [Abstract][Full Text] [Related]
2. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202 [TBL] [Abstract][Full Text] [Related]
3. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Franklin JC; Cafiso DS Biophys J; 1993 Jul; 65(1):289-99. PubMed ID: 8396456 [TBL] [Abstract][Full Text] [Related]
4. ESR spin-label studies of lipid-protein interactions in membranes. Marsh D; Watts A; Pates RD; Uhl R; Knowles PF; Esmann M Biophys J; 1982 Jan; 37(1):265-74. PubMed ID: 6275924 [TBL] [Abstract][Full Text] [Related]
5. Probes of membrane electrostatics: synthesis and voltage-dependent partitioning of negative hydrophobic ion spin labels in lipid vesicles. Franklin JC; Cafiso DS; Flewelling RF; Hubbell WL Biophys J; 1993 Mar; 64(3):642-53. PubMed ID: 8386011 [TBL] [Abstract][Full Text] [Related]
6. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers. Hung SC; Wang W; Chan SI; Chen HM Biophys J; 1999 Dec; 77(6):3120-33. PubMed ID: 10585933 [TBL] [Abstract][Full Text] [Related]
7. Phosphatidylserine content is a more important contributor than transmembrane potential to interactions of merocyanine 540 with lipid bilayers. Waczulikova I; Rozalski M; Rievaj J; Nagyova K; Bryszewska M; Watala C Biochim Biophys Acta; 2002 Dec; 1567(1-2):176-82. PubMed ID: 12488051 [TBL] [Abstract][Full Text] [Related]
8. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314 [TBL] [Abstract][Full Text] [Related]
9. Cholesterol attenuates and prevents bilayer damage and breakdown in lipoperoxidized model membranes. A spin labeling EPR study. Megli FM; Conte E; Ishikawa T Biochim Biophys Acta; 2011 Sep; 1808(9):2267-74. PubMed ID: 21600189 [TBL] [Abstract][Full Text] [Related]
10. Effects of lutein and cholesterol on alkyl chain bending in lipid bilayers: a pulse electron spin resonance spin labeling study. Yin JJ; Subczynski WK Biophys J; 1996 Aug; 71(2):832-9. PubMed ID: 8842221 [TBL] [Abstract][Full Text] [Related]
11. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy. Cruz A; Casals C; Plasencia I; Marsh D; Pérez-Gil J Biochemistry; 1998 Jun; 37(26):9488-96. PubMed ID: 9649332 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved electron spin resonance studies of spin-labelled lipids in membranes. Bartucci R; Erilov DA; Guzzi R; Sportelli L; Dzuba SA; Marsh D Chem Phys Lipids; 2006 Jun; 141(1-2):142-57. PubMed ID: 16564516 [TBL] [Abstract][Full Text] [Related]
13. Lipid chain-length dependence for incorporation of alamethicin in membranes: electron paramagnetic resonance studies on TOAC-spin labeled analogs. Marsh D; Jost M; Peggion C; Toniolo C Biophys J; 2007 Jun; 92(11):4002-11. PubMed ID: 17351010 [TBL] [Abstract][Full Text] [Related]
14. Alpha-synuclein association with phosphatidylglycerol probed by lipid spin labels. Ramakrishnan M; Jensen PH; Marsh D Biochemistry; 2003 Nov; 42(44):12919-26. PubMed ID: 14596606 [TBL] [Abstract][Full Text] [Related]
15. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers. Ge M; Freed JH Biophys J; 1993 Nov; 65(5):2106-23. PubMed ID: 7507719 [TBL] [Abstract][Full Text] [Related]
16. Spin label study of local anesthetic-lipid membrane interactions. Phase separation of the uncharged form and bilayer micellization by the charged form of tetracaine. Frezzatti WA; Toselli WR; Schreier S Biochim Biophys Acta; 1986 Sep; 860(3):531-8. PubMed ID: 3017421 [TBL] [Abstract][Full Text] [Related]
17. Anesthetics reduce the magnitude of the membrane dipole potential. Measurements in lipid vesicles using voltage-sensitive spin probes. Qin Z; Szabo G; Cafiso DS Biochemistry; 1995 Apr; 34(16):5536-43. PubMed ID: 7727414 [TBL] [Abstract][Full Text] [Related]
18. Association of alpha-synuclein and mutants with lipid membranes: spin-label ESR and polarized IR. Ramakrishnan M; Jensen PH; Marsh D Biochemistry; 2006 Mar; 45(10):3386-95. PubMed ID: 16519533 [TBL] [Abstract][Full Text] [Related]
19. Interdigitation of phosphatidylcholine and phosphatidylethanolamine mixed with complexes of acidic lipids and polymyxin B or polymyxin B nonapeptide. Boggs JM; Wang HY; Rangaraj G; Tümmler B Biochim Biophys Acta; 1989 Oct; 985(2):199-210. PubMed ID: 2553118 [TBL] [Abstract][Full Text] [Related]
20. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. Gurtovenko AA; Vattulainen I J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]