BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7947997)

  • 1. Substrate and positional specificities of human and mouse lecithin-cholesterol acyltransferases. Studies with wild type recombinant and chimeric enzymes expressed in vitro.
    Subbaiah PV; Liu M; Senz J; Wang X; Pritchard PH
    Biochim Biophys Acta; 1994 Nov; 1215(1-2):150-6. PubMed ID: 7947997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of lecithin:cholesterol acyltransferase and atherogenic risk: comparative studies on the plasma composition and in vitro synthesis of cholesteryl esters in 14 vertebrate species.
    Liu M; Bagdade JD; Subbaiah PV
    J Lipid Res; 1995 Aug; 36(8):1813-24. PubMed ID: 7595102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies on the substrate specificity of lecithin:cholesterol acyltransferase towards the molecular species of phosphatidylcholine in the plasma of 14 vertebrates.
    Subbaiah PV; Liu M
    J Lipid Res; 1996 Jan; 37(1):113-22. PubMed ID: 8820107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of N-linked glycosylation of lecithin:cholesterol acyltransferase in lipoprotein substrate specificity.
    O K; Hill JS; Pritchard PH
    Biochim Biophys Acta; 1995 Jan; 1254(2):193-7. PubMed ID: 7827124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of sn-2 acyl group of phosphatidylcholine in determining the positional specificity of lecithin-cholesterol acyltransferase.
    Subbaiah PV; Liu M; Paltauf F
    Biochemistry; 1994 Nov; 33(45):13259-66. PubMed ID: 7947733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of N-terminal amino acids from human lecithin:cholesterol acyltransferase differentially affects enzyme activity toward alpha- and beta-substrate lipoproteins.
    Vickaryous NK; Teh EM; Stewart B; Dolphin PJ; Too CK; McLeod RS
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):164-72. PubMed ID: 12637024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the positional specificity of lecithin-cholesterol acyltransferase by the acyl group composition of its phosphatidylcholine substrate: role of the sn-1-acyl group.
    Liu M; Subramanian VS; Subbaiah PV
    Biochemistry; 1998 Sep; 37(39):13626-33. PubMed ID: 9753449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trans unsaturated fatty acids inhibit lecithin: cholesterol acyltransferase and alter its positional specificity.
    Subbaiah PV; Subramanian VS; Liu M
    J Lipid Res; 1998 Jul; 39(7):1438-47. PubMed ID: 9684747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid residue 149 of lecithin:cholesterol acyltransferase determines phospholipase A2 and transacylase fatty acyl specificity.
    Wang J; Gebre AK; Anderson RA; Parks JS
    J Biol Chem; 1997 Jan; 272(1):280-6. PubMed ID: 8995259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and in vitro expression of rat lecithin:cholesterol acyltransferase.
    Wang J; Gebre AK; Anderson RA; Parks JS
    Biochim Biophys Acta; 1997 Jun; 1346(3):207-11. PubMed ID: 9219904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered positional specificity of human plasma lecithin-cholesterol acyltransferase in the presence of sn-2 arachidonoyl phosphatidyl cholines. Mechanism of formation of saturated cholesteryl esters.
    Subbaiah PV; Liu M; Bolan PJ; Paltauf F
    Biochim Biophys Acta; 1992 Sep; 1128(1):83-92. PubMed ID: 1390880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylation structure and enzyme activity of lecithin:cholesterol acyltransferase from human plasma, HepG2 cells, and baculoviral and Chinese hamster ovary cell expression systems.
    Miller KR; Wang J; Sorci-Thomas M; Anderson RA; Parks JS
    J Lipid Res; 1996 Mar; 37(3):551-61. PubMed ID: 8728318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative charge at amino acid 149 is the molecular determinant for substrate specificity of lecithin: cholesterol acyltransferase for phosphatidylcholine containing 20-carbon sn-2 fatty acyl chains.
    Zhao Y; Wang J; Gebre AK; Chisholm JW; Parks JS
    Biochemistry; 2003 Dec; 42(47):13941-9. PubMed ID: 14636062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of human lecithin-cholesterol acyltransferase activity by carboxyl-terminal truncation.
    Lee YP; Adimoolam S; Liu M; Subbaiah PV; Glenn K; Jonas A
    Biochim Biophys Acta; 1997 Feb; 1344(3):250-61. PubMed ID: 9059515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereochemical and positional specificity of the lipase/acyltransferase produced by Aeromonas hydrophila.
    Robertson DL; Hilton S; Buckley JT
    Biochemistry; 1992 Jun; 31(21):4974-80. PubMed ID: 1599923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of glutamic acid residues 154, 155, and 165 of lecithin:cholesterol acyltransferase in cholesterol esterification and phospholipase A2 activities.
    Wang J; DeLozier JA; Gebre AK; Dolphin PJ; Parks JS
    J Lipid Res; 1998 Jan; 39(1):51-8. PubMed ID: 9469585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of cysteines in human lecithin:cholesterol acyltransferase.
    Qu SJ; Fan HZ; Blanco-Vaca F; Pownall HJ
    Biochemistry; 1993 Mar; 32(12):3089-94. PubMed ID: 8457570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lecithin cholesterol acyltransferase.
    Jonas A
    Biochim Biophys Acta; 2000 Dec; 1529(1-3):245-56. PubMed ID: 11111093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of lecithin:cholesterol acyltransferase expressed in a human lung cell line.
    Lane SB; Tchedre KT; Nair MP; Thigpen AE; Lacko AG
    Protein Expr Purif; 2004 Aug; 36(2):157-64. PubMed ID: 15249036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of site-directed mutagenesis on the N-glycosylation sites of human lecithin:cholesterol acyltransferase.
    Qu SJ; Fan HZ; Blanco-Vaca F; Pownall HJ
    Biochemistry; 1993 Aug; 32(34):8732-6. PubMed ID: 8364023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.