These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7948224)

  • 1. Membrane potential changes of skeletomotor neurons in response to random stretches of the triceps surae muscles in decerebrate cats.
    Boskov D; Jocic M; Jovanovic K; Ljubisavljevic M; Anastasijevic R
    Biol Cybern; 1994; 71(4):333-9. PubMed ID: 7948224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike discharges of skeletomotor neurons during random noise modulated transmembrane current stimulation and muscle stretch.
    Boskov D; Jocic M; Jovanovic K; Ljubisavljevic M; Anastasijevic R
    Biol Cybern; 1994; 71(4):341-8. PubMed ID: 7948225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time coupling of skeletomotor discharges in response to pseudo-random transsynaptic and transmembrane stimulation.
    Anastasijević R; Jovanović K; Ljubisavljević M; Vuco J
    Biol Cybern; 1991; 64(4):321-8. PubMed ID: 2025666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of triceps surae motor units in the decerebrate cat. II. Heterogeneity among soleus motor units.
    Sokoloff AJ; Cope TC
    J Neurophysiol; 1996 May; 75(5):2005-16. PubMed ID: 8734599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recruitment of triceps surae motor units in the decerebrate cat. I. Independence of type S units in soleus and medial gastrocnemius muscles.
    Dacko SM; Sokoloff AJ; Cope TC
    J Neurophysiol; 1996 May; 75(5):1997-2004. PubMed ID: 8734598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subthreshold activation of spinal motoneurones in the stretch reflex: experimental data and modeling.
    Kostyukov AI; Lytvynenko SV; Bulgakova NV; Gorkovenko AV
    Biol Cybern; 2009 Apr; 100(4):307-18. PubMed ID: 19326142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Activity of fusimotor neurons during reflex muscle contraction].
    Bucho I; Anastasievich R
    Neirofiziologiia; 1984; 16(5):630-7. PubMed ID: 6514061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damping actions of the neuromuscular system with inertial loads: soleus muscle of the decerebrate cat.
    Lin DC; Rymer WZ
    J Neurophysiol; 2000 Feb; 83(2):652-8. PubMed ID: 10669481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chronic spinalization on ankle extensor motoneurons. III. Composite Ia EPSPs in motoneurons separated into motor unit types.
    Hochman S; McCrea DA
    J Neurophysiol; 1994 Apr; 71(4):1480-90. PubMed ID: 8035229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in fusimotor outflow during vibration-induced contraction of triceps surae muscles in decerebrate cats.
    Anastasijević R; Vuco J
    Exp Neurol; 1984 Sep; 85(3):523-32. PubMed ID: 6236099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretch and H reflexes in triceps surae are similar during tonic and rhythmic contractions in high decerebrate cats.
    Misiaszek JE; de Serres SJ; Stein RB; Jiang W; Pearson KG
    J Neurophysiol; 2000 Apr; 83(4):1941-50. PubMed ID: 10758105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional identification of the input-output transforms of motoneurones in the rat and cat.
    Poliakov AV; Powers RK; Binder MD
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):401-24. PubMed ID: 9365914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chronic spinalization on ankle extensor motoneurons. II. Motoneuron electrical properties.
    Hochman S; McCrea DA
    J Neurophysiol; 1994 Apr; 71(4):1468-79. PubMed ID: 8035228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of hindlimb motoneuron membrane properties in acute and chronic spinal cats.
    Baker LL; Chandler SH
    Brain Res; 1987 Sep; 420(2):333-9. PubMed ID: 3676765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different fusimotor reflexes from the ipsi- and contralateral hind limbs of the cat assessed in the same primary muscle spindle afferents.
    Johansson H; Sjölander P; Sojka P; Wadell I
    J Physiol (Paris); 1988-1989; 83(4):281-92. PubMed ID: 2978833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of postsynaptic potentials evoked by sural nerve stimulation in hindlimb motoneurons from acute and chronic spinal cats.
    Baker LL; Chandler SH
    Brain Res; 1987 Sep; 420(2):340-50. PubMed ID: 3676766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term plasticity in hindlimb motoneurons of decerebrate cats.
    Bennett DJ; Hultborn H; Fedirchuk B; Gorassini M
    J Neurophysiol; 1998 Oct; 80(4):2038-45. PubMed ID: 9772259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysynaptic pathways from high threshold muscle afferents innervating hindlimb muscles to tail motoneurons in the spinalized cat.
    Wada N; Sugita S; Hirao A; Tokuriki M
    Arch Ital Biol; 1996 Mar; 134(2):191-5. PubMed ID: 8741226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of active dendritic currents on input-output processing in spinal motoneurons in vivo.
    Lee RH; Kuo JJ; Jiang MC; Heckman CJ
    J Neurophysiol; 2003 Jan; 89(1):27-39. PubMed ID: 12522157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear properties of stretch reflex studied in the decerebrate cat.
    Aldridge JW; Stein RB
    J Neurophysiol; 1982 Feb; 47(2):179-92. PubMed ID: 7062095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.