These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 7948592)
1. Effect of polyol molecular weight on the physical properties and haemocompatibility of polyurethanes containing polyethylene oxide macroglycols. Silver JH; Myers CW; Lim F; Cooper SL Biomaterials; 1994 Jul; 15(9):695-704. PubMed ID: 7948592 [TBL] [Abstract][Full Text] [Related]
2. Bulk, surface, and blood-contacting properties of polyetherurethanes modified with polyethylene oxide. Okkema AZ; Grasel TG; Zdrahala RJ; Solomon DD; Cooper SL J Biomater Sci Polym Ed; 1989; 1(1):43-62. PubMed ID: 2488846 [TBL] [Abstract][Full Text] [Related]
3. Effect of polyol type on the surface structure of sulfonate-containing polyurethanes. Silver JH; Lewis KB; Ratner BD; Cooper SL J Biomed Mater Res; 1993 Jun; 27(6):735-45. PubMed ID: 8408103 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. Gorna K; Gogolewski S J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518 [TBL] [Abstract][Full Text] [Related]
6. Effect of polyol type on the physical properties and thrombogenicity of sulfonate-containing polyurethanes. Silver JH; Marchant JW; Cooper SL J Biomed Mater Res; 1993 Nov; 27(11):1443-57. PubMed ID: 8263006 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG. Mei T; Zhu Y; Ma T; He T; Li L; Wei C; Xu K J Biomed Mater Res A; 2014 Sep; 102(9):3243-54. PubMed ID: 24133043 [TBL] [Abstract][Full Text] [Related]
8. Effects of types and length of soft-segments on the physical properties and blood compatibility of polyurethanes. Chang CH; Tsao CT; Chang KY; Chen SH; Han JL; Hsieh KH Biomed Mater Eng; 2012; 22(6):373-82. PubMed ID: 23114466 [TBL] [Abstract][Full Text] [Related]
9. Non-fouling biomaterials based on blends of polyethylene oxide copolymers and polyurethane: simultaneous measurement of platelet adhesion and fibrinogen adsorption from flowing whole blood. Tan J; McClung WG; Brash JL J Biomater Sci Polym Ed; 2013; 24(4):497-506. PubMed ID: 23565690 [TBL] [Abstract][Full Text] [Related]
10. Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes. Takahara A; Okkema AZ; Cooper SL; Coury AJ Biomaterials; 1991 Apr; 12(3):324-34. PubMed ID: 1854901 [TBL] [Abstract][Full Text] [Related]
11. Bulk, surface and blood-contacting properties of polyether polyurethanes modified with polydimethylsiloxane macroglycols. Okkema AZ; Fabrizius DJ; Grasel TG; Cooper SL; Zdrahala RJ Biomaterials; 1989 Jan; 10(1):23-32. PubMed ID: 2713430 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes. Lim F; Yang CZ; Cooper SL Biomaterials; 1994 May; 15(6):408-16. PubMed ID: 8080930 [TBL] [Abstract][Full Text] [Related]
13. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends. Tan J; Brash JL J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775 [TBL] [Abstract][Full Text] [Related]
14. Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender. Okkema AZ; Visser SA; Cooper SL J Biomed Mater Res; 1991 Nov; 25(11):1371-95. PubMed ID: 1797809 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces. Liu X; Xia Y; Liu L; Zhang D; Hou Z J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018 [TBL] [Abstract][Full Text] [Related]
16. In vitro blood compatibility of surface-modified polyurethanes. Bernacca GM; Gulbransen MJ; Wilkinson R; Wheatley DJ Biomaterials; 1998 Jul; 19(13):1151-65. PubMed ID: 9720899 [TBL] [Abstract][Full Text] [Related]
17. Effects of oligoethylene oxide monoalkyl(aryl) alcohol ether grafting on the surface properties and blood compatibility of a polyurethane. Lim F; Yu XH; Cooper SL Biomaterials; 1993 Jun; 14(7):537-45. PubMed ID: 8329527 [TBL] [Abstract][Full Text] [Related]
18. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability. Liu KL; Choo ES; Wong SY; Li X; He CB; Wang J; Li J J Phys Chem B; 2010 Jun; 114(22):7489-98. PubMed ID: 20469884 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of degradable polyurethane elastomers containing and amino acid-based chain extender. Skarja GA; Woodhouse KA J Biomater Sci Polym Ed; 1998; 9(3):271-95. PubMed ID: 9556762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]