These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7948653)

  • 1. Wavelet-type analysis of transient-evoked otoacoustic emissions.
    Pasanen EG; Travis JD; Thornhill RJ
    Biomed Sci Instrum; 1994; 30():75-80. PubMed ID: 7948653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in transient-evoked otoacoustic emission levels with negative tympanometric peak pressure in infants and toddlers.
    Prieve BA; Calandruccio L; Fitzgerald T; Mazevski A; Georgantas LM
    Ear Hear; 2008 Aug; 29(4):533-42. PubMed ID: 18469719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet and matching pursuit estimates of the transient-evoked otoacoustic emission latency.
    Notaro G; Al-Maamury AM; Moleti A; Sisto R
    J Acoust Soc Am; 2007 Dec; 122(6):3576-85. PubMed ID: 18247765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear active mechanisms in young normal-hearing subjects affected by Williams syndrome: time-frequency analysis of otoacoustic emissions.
    Paglialonga A; Barozzi S; Brambilla D; Soi D; Cesarani A; Gagliardi C; Comiotto E; Spreafico E; Tognola G
    Hear Res; 2011 Feb; 272(1-2):157-67. PubMed ID: 20969939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swept-tone transient-evoked otoacoustic emissions.
    Bennett CL; Özdamar Ö
    J Acoust Soc Am; 2010 Oct; 128(4):1833-44. PubMed ID: 20968356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-frequency transient evoked otoacoustic emissions acquisition with auditory canal compensated clicks using swept-tone analysis.
    Bennett CL; Ozdamar O
    J Acoust Soc Am; 2010 Apr; 127(4):2410-9. PubMed ID: 20370024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-frequency distribution methods for the analysis of click-evoked otoacoustic emissions.
    Tognola G; Grandori F; Ravazzani P
    Technol Health Care; 1998 Sep; 6(2-3):159-75. PubMed ID: 9839862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet analysis of click-evoked otoacoustic emissions.
    Tognola G; Grandori F; Ravazzani P
    IEEE Trans Biomed Eng; 1998 Jun; 45(6):686-97. PubMed ID: 9609934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital subtraction method for transient evoked otoacoustic emission recording with ipsilateral noise suppression: an application to stimulus artifact reduction.
    Arslan RB; Ozdamar O; Ulgen Y
    Audiology; 2001; 40(2):55-62. PubMed ID: 11409763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The frequency-domain analysis of TEOAE in neonates and youths].
    Qian J; Jiang W; Wang L
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1994; 29(6):362-5. PubMed ID: 7742030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds.
    Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G
    Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflection of bounce phenomenon in TEOAE in humans: dependence upon exposure parameters.
    Gamgebeli Z; Burdzgla I; Bornitz M; Kevanishvili Z; Zahnert T
    Georgian Med News; 2007 Mar; (144):8-13. PubMed ID: 17473325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient-evoked otoacoustic emissions in a representative population sample aged 18 to 25 years.
    Ferguson MA; Smith PA; Davis AC; Lutman ME
    Audiology; 2000; 39(3):125-34. PubMed ID: 10905398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Wavelet application to reduction of stimulus artifact in transient evoked otoacoustic emissions testing].
    Chai X; Cheng J; Dong H; Shou Y; Dong M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Jun; 16(2):177-80, 188. PubMed ID: 12552658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronized spontaneous otoacoustic emissions analyzed in a time-frequency domain.
    Jedrzejczak WW; Blinowska KJ; Kochanek K; Skarzynski H
    J Acoust Soc Am; 2008 Dec; 124(6):3720-9. PubMed ID: 19206799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
    Vetesník A; Turcanu D; Dalhoff E; Gummer AW
    Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Otoacoustic emissions: an emerging diagnostic tool.
    Noel PE; Ramsey MJ; Amedee RG
    J La State Med Soc; 1995 Apr; 147(4):125-30. PubMed ID: 7775838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bispectral approach to analyze nonlinear cochlear active mechanisms in transient evoked otoacoustic emissions.
    Marchesi S; Tognola G; Paglialonga A
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):401-13. PubMed ID: 23893200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principal component analysis as a method to facilitate fast detection of transient-evoked otoacoustic emissions.
    Ravazzani P; Tognola G; Parazzini M; Grandori F
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):249-52. PubMed ID: 12665039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [3-dimensional representation of transient evoked otoacoustic emissions].
    Breuer T; Herberhold C; Rödel R
    Laryngorhinootologie; 1994 Mar; 73(3):113-7. PubMed ID: 8172628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.