These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7948676)

  • 1. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.
    Chen W; Lee RC
    Biophys J; 1994 Aug; 67(2):603-12. PubMed ID: 7948676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramembrane potential-induced electroconformational changes in sodium channel proteins: a potential mechanism involved in electric injury.
    Chen W; Zhongsheng Z; Lee RC
    Burns; 2006 Feb; 32(1):52-9. PubMed ID: 16384650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field-induced functional reductions in the K+ channels mainly resulted from supramembrane potential-mediated electroconformational changes.
    Chen W; Han Y; Chen Y; Astumian D
    Biophys J; 1998 Jul; 75(1):196-206. PubMed ID: 9649379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage dependent ionic currents in frog cultured skeletal myocytes.
    Lukyanenko VI; Katina IE; Nasledov GA; Lonsky AV
    Gen Physiol Biophys; 1993 Jun; 12(3):231-47. PubMed ID: 8224780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of voltage-dependent and TTX-sensitive Na(+)-channels in human melanocytes.
    Ekmehag B; Persson B; Rorsman P; Rorsman H
    Pigment Cell Res; 1994 Oct; 7(5):333-8. PubMed ID: 7886006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane conductances involved in amplification of small signals by sodium channels in photoreceptors of drone honey bee.
    Vallet AM; Coles JA; Eilbeck JC; Scott AC
    J Physiol; 1992 Oct; 456():303-24. PubMed ID: 1338099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-linear voltage dependent charge movement in frog skeletal muscle.
    Chandler WK; Rakowski RF; Schneider MF
    J Physiol; 1976 Jan; 254(2):245-83. PubMed ID: 1082506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ionic currents and electrophysiological properties of goldfish somatotropes in primary culture.
    Yu Y; Ali DW; Chang JP
    Gen Comp Endocrinol; 2010 Dec; 169(3):231-43. PubMed ID: 20850441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of tetracaine on delayed potassium channels and displacement currents in frog skeletal muscle.
    Almers W
    J Physiol; 1976 Nov; 262(3):613-37. PubMed ID: 1087642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-dependent ion channels in small-cell lung cancer cells.
    Pancrazio JJ; Viglione MP; Tabbara IA; Kim YI
    Cancer Res; 1989 Nov; 49(21):5901-6. PubMed ID: 2477149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K(+)-channel blockers do not decrease acetylcholine depolarizations in canine trachealis.
    Daniel EE; Jury J; Serio R; Jager LP
    Can J Physiol Pharmacol; 1992 Jan; 70(1):43-52. PubMed ID: 1581854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels.
    MacKinnon R; Yellen G
    Science; 1990 Oct; 250(4978):276-9. PubMed ID: 2218530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry and asymmetry of permeation through toxin-modified Na+ channels.
    Garber SS
    Biophys J; 1988 Nov; 54(5):767-76. PubMed ID: 2853977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single K+ currents during differentiation of embryonic muscle cells in vitro.
    Zemková H; Vyskocil F; Tolar M; Vlachová V; Ujec E
    Biochim Biophys Acta; 1989 Nov; 986(1):146-50. PubMed ID: 2510830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large and small vertebrate sensory neurons express different Na and K channel subtypes.
    Campbell DT
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9569-73. PubMed ID: 1329102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The action of external tetraethylammonium ions on unitary delayed rectifier potassium channels of frog skeletal muscle.
    Spruce AE; Standen NB; Stanfield PR
    J Physiol; 1987 Dec; 393():467-78. PubMed ID: 2451742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of ATP-sensitive K channels by a K channel opener (SR 44866) and the effect upon electrical and mechanical activity of frog skeletal muscle.
    Sauviat MP; Ecault E; Faivre JF; Findlay I
    Pflugers Arch; 1991 Apr; 418(3):261-5. PubMed ID: 1649991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasopressin generates a persistent voltage-dependent sodium current in a mammalian motoneuron.
    Raggenbass M; Goumaz M; Sermasi E; Tribollet E; Dreifuss JJ
    J Neurosci; 1991 Jun; 11(6):1609-16. PubMed ID: 1646297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic channels in cultured Drosophila neurons.
    Saito M; Wu CF
    EXS; 1993; 63():366-89. PubMed ID: 7678530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.