These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 7948693)
1. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR. Akutsu H; Nishimoto S; Kyogoku Y Biophys J; 1994 Aug; 67(2):804-11. PubMed ID: 7948693 [TBL] [Abstract][Full Text] [Related]
2. The presence of the 30 nm filament structure of chromatins in intact chicken erythrocytes observed by 31P NMR. Nishimoto S; Akutsu H; Kyogoku Y FEBS Lett; 1987 Mar; 213(2):293-6. PubMed ID: 2435577 [TBL] [Abstract][Full Text] [Related]
3. Increased stability of the higher order structure of chicken erythrocyte chromatin: nanosecond anisotropy studies of intercalated ethidium. Ashikawa I; Kinosita K; Ikegami A; Nishimura Y; Tsuboi M Biochemistry; 1985 Mar; 24(6):1291-7. PubMed ID: 3986177 [TBL] [Abstract][Full Text] [Related]
4. Dynamic properties of nucleic acids in biosupramolecular systems, as studied by 31P NMR. Odahara T; Nishimoto S; Katsutani N; Kyogoku Y; Morimoto Y; Matsushiro A; Akutsu H J Biochem; 1994 Feb; 115(2):270-8. PubMed ID: 8206876 [TBL] [Abstract][Full Text] [Related]
5. Interaction and conformational changes of chromatin with divalent ions. Borochov N; Ausio J; Eisenberg H Nucleic Acids Res; 1984 Apr; 12(7):3089-96. PubMed ID: 6718248 [TBL] [Abstract][Full Text] [Related]
6. Reversible in vitro packing of nucleosomal filaments into globular supranucleosomal units in chromatin of whole chick erythrocyte nuclei. Zentgraf H; Müller U; Franke WW Eur J Cell Biol; 1980 Dec; 23(1):171-88. PubMed ID: 7460964 [TBL] [Abstract][Full Text] [Related]
7. Chromatin dynamics of unfolding and refolding controlled by the nucleosome repeat length and the linker and core histones. Kobori T; Iwamoto S; Takeyasu K; Ohtani T Biopolymers; 2007 Mar; 85(4):295-307. PubMed ID: 17211885 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Dufourc EJ; Mayer C; Stohrer J; Althoff G; Kothe G Biophys J; 1992 Jan; 61(1):42-57. PubMed ID: 1540698 [TBL] [Abstract][Full Text] [Related]
9. Higher order folding of two different classes of chromatin isolated from chicken erythrocyte nuclei. A light scattering study. Fulmer AW; Bloomfield VA Biochemistry; 1982 Mar; 21(5):985-92. PubMed ID: 7074067 [TBL] [Abstract][Full Text] [Related]
10. Salt-dependent structural changes of chromatin in isolated chicken liver nuclei as visualized by scanning electron microscopy. Arai S; Hayashi M; Nakanishi YH J Electron Microsc (Tokyo); 1995 Aug; 44(4):191-7. PubMed ID: 8568443 [TBL] [Abstract][Full Text] [Related]
11. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Carruthers LM; Bednar J; Woodcock CL; Hansen JC Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352 [TBL] [Abstract][Full Text] [Related]
12. Interaction of chromatin with NaCl and MgCl2. Solubility and binding studies, transition to and characterization of the higher-order structure. Ausio J; Borochov N; Seger D; Eisenberg H J Mol Biol; 1984 Aug; 177(3):373-98. PubMed ID: 6471101 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of the phosphate group in phospholipid bilayers. A 31P-1H transient Overhauser effect study. Milburn MP; Jeffrey KR Biophys J; 1990 Jul; 58(1):187-94. PubMed ID: 2383631 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and physiochemical characterization of chromatin fractions with different degrees of solubility isolated from chicken erythrocyte nuclei. Ausio J; Sasi R; Fasman GD Biochemistry; 1986 Apr; 25(8):1981-8. PubMed ID: 3707925 [TBL] [Abstract][Full Text] [Related]
15. Salt-dependent compaction of di- and trinucleosomes studied by small-angle neutron scattering. Hammermann M; Tóth K; Rodemer C; Waldeck W; May RP; Langowski J Biophys J; 2000 Jul; 79(1):584-94. PubMed ID: 10866982 [TBL] [Abstract][Full Text] [Related]
16. Comparative subunit structure of HeLa, yeast, and chicken erythrocyte chromatin. Lohr D; Corden J; Tatchell K; Kovacic RT; Van Holde KE Proc Natl Acad Sci U S A; 1977 Jan; 74(1):79-83. PubMed ID: 319461 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of the condensation of chicken erythrocyte and calf thymus chromatins by di- and multivalent cations. Marquet R; Colson P; Matton AM; Houssier C; Thiry M; Goessens G J Biomol Struct Dyn; 1988 Feb; 5(4):839-57. PubMed ID: 3271492 [TBL] [Abstract][Full Text] [Related]
18. Polyelectrolyte counterion condensation theory explains differential scanning calorimetry studies of salt-induced condensation of chicken erythrocyte chromatin. Labarbe R; Flock S; Maus C; Houssier C Biochemistry; 1996 Mar; 35(10):3319-27. PubMed ID: 8605169 [TBL] [Abstract][Full Text] [Related]