BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 7948695)

  • 1. Conformational transitions of duplex and triplex nucleic acid helices: thermodynamic analysis of effects of salt concentration on stability using preferential interaction coefficients.
    Bond JP; Anderson CF; Record MT
    Biophys J; 1994 Aug; 67(2):825-36. PubMed ID: 7948695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the Poisson Boltzmann polyelectrolyte model for analysis of equilibria between single-, double-, and triple-stranded polynucleotides in the presence of K(+), Na(+), and Mg(2+) ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    J Biomol Struct Dyn; 2002 Oct; 20(2):275-90. PubMed ID: 12354079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the stability of double stranded nucleic acids.
    Dubins DN; Lee A; Macgregor RB; Chalikian TV
    J Am Chem Soc; 2001 Sep; 123(38):9254-9. PubMed ID: 11562205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers: a grand canonical Monte Carlo analysis.
    Olmsted MC; Anderson CF; Record MT
    Biopolymers; 1991 Nov; 31(13):1593-604. PubMed ID: 1814506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coulombic free energy of polymeric nucleic acid: low- and high-salt analytical approximations for the cylindrical Poisson-Boltzmann model.
    Shkel IA
    J Phys Chem B; 2010 Aug; 114(33):10793-803. PubMed ID: 20681741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(rA).poly(rU) with Ni(2+) ions at different temperatures: infrared absorption and vibrational circular dichroism spectroscopy.
    Andrushchenko V; Blagoi Y; van de Sande JH; Wieser H
    J Biomol Struct Dyn; 2002 Apr; 19(5):889-906. PubMed ID: 11922843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly salt-dependent enthalpy change for Escherichia coli SSB protein-nucleic acid binding due to ion-protein interactions.
    Lohman TM; Overman LB; Ferrari ME; Kozlov AG
    Biochemistry; 1996 Apr; 35(16):5272-9. PubMed ID: 8611514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Berenil binding to higher ordered nucleic acid structures: complexation with a DNA and RNA triple helix.
    Pilch DS; Kirolos MA; Breslauer KJ
    Biochemistry; 1995 Dec; 34(49):16107-24. PubMed ID: 8519768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of nucleic acid structure by ligand binding: induction of a DNA.RNA.DNA hybrid triplex by DAPI intercalation.
    Xu Z; Pilch DS; Srinivasan AR; Olson WK; Geacintov NE; Breslauer KJ
    Bioorg Med Chem; 1997 Jun; 5(6):1137-47. PubMed ID: 9222508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ru(bpy)2(7-CH3-dppz)](2+) and [Ru(phen)2(7-CH3-dppz)](2+) as metallointercalators that affect third-strand stabilization of the poly(U)˙poly(A)*poly(U) triplex.
    Tang W; Zhu Z; Tan L
    Mol Biosyst; 2016 Apr; 12(5):1478-85. PubMed ID: 26999574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercalation of ethidium into triple-strand poly(rA).2poly(rU): a thermodynamic and kinetic study.
    Garcia B; Leal JM; Paiotta V; Ibeas S; Ruiz R; Secco F; Venturini M
    J Phys Chem B; 2006 Aug; 110(32):16131-8. PubMed ID: 16898771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mg2+-induced triplex formation of an equimolar mixture of poly(rA) and poly(rU).
    Kankia BI
    Nucleic Acids Res; 2003 Sep; 31(17):5101-7. PubMed ID: 12930961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic microenvironmental effects on triplex DNA stabilization: cationic counterion effects on poly(dT)·poly(dA)·poly(dT).
    Beck A; Vijayanathan V; Thomas T; Thomas TJ
    Biochimie; 2013 Jun; 95(6):1310-8. PubMed ID: 23454377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the number of nucleic acid oligomer charges on the salt dependence of stability (DeltaG 37degrees) and melting temperature (Tm): NLPB analysis of experimental data.
    Shkel IA; Record MT
    Biochemistry; 2004 Jun; 43(22):7090-101. PubMed ID: 15170346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of single-stranded RNA and DNA interactions with oligolysines containing tryptophan. Effects of base composition.
    Mascotti DP; Lohman TM
    Biochemistry; 1993 Oct; 32(40):10568-79. PubMed ID: 7691177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of the hairpin to mismatched duplex transition of d(GCCGCAGC) on NaCl solution.
    Garcia AE; Gupta G; Soumpasis DM; Tung CS
    J Biomol Struct Dyn; 1990 Aug; 8(1):173-86. PubMed ID: 2275792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics, Ion, and Water Binding of the Unfolding of AA/UU Base Pair Stacks and UAU/UAU Base Triplet Stacks in RNA.
    Carr CE; Khutsishvili I; Marky LA
    J Phys Chem B; 2018 Jul; 122(28):7057-7065. PubMed ID: 29932334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of DNA dumbbells. III. Theoretical analysis of optical melting curves of dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14).
    Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1992 Jul; 32(7):881-92. PubMed ID: 1391636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains.
    Durand M; Peloille S; Thuong NT; Maurizot JC
    Biochemistry; 1992 Sep; 31(38):9197-204. PubMed ID: 1390706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.