BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 7948893)

  • 21. Molecular cloning and expression patterns of three alleles of the Deficiens-homologous gene St-Deficiens from Solanum tuberosum.
    Garcia-Maroto F; Salamini F; Rohde W
    Plant J; 1993 Nov; 4(5):771-80. PubMed ID: 7903890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis.
    Pnueli L; Abu-Abeid M; Zamir D; Nacken W; Schwarz-Sommer Z; Lifschitz E
    Plant J; 1991 Sep; 1(2):255-66. PubMed ID: 1688249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular analysis of tap2, an anther-specific gene from Antirrhinum majus.
    Nacken WK; Huijser P; Saedler H; Sommer H
    FEBS Lett; 1991 Mar; 280(1):155-8. PubMed ID: 1672656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity.
    Jack T; Fox GL; Meyerowitz EM
    Cell; 1994 Feb; 76(4):703-16. PubMed ID: 7907276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1.
    Kempin SA; Mandel MA; Yanofsky MF
    Plant Physiol; 1993 Dec; 103(4):1041-6. PubMed ID: 7507255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis.
    Tröbner W; Ramirez L; Motte P; Hue I; Huijser P; Lönnig WE; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1992 Dec; 11(13):4693-704. PubMed ID: 1361166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors.
    Sommer H; Beltrán JP; Huijser P; Pape H; Lönnig WE; Saedler H; Schwarz-Sommer Z
    EMBO J; 1990 Mar; 9(3):605-13. PubMed ID: 1968830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers.
    Nakamura T; Fukuda T; Nakano M; Hasebe M; Kameya T; Kanno A
    Plant Mol Biol; 2005 Jun; 58(3):435-45. PubMed ID: 16021405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LEAFY controls floral meristem identity in Arabidopsis.
    Weigel D; Alvarez J; Smyth DR; Yanofsky MF; Meyerowitz EM
    Cell; 1992 May; 69(5):843-59. PubMed ID: 1350515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression patterns of novel genes encoding homeodomain leucine-zipper proteins in Arabidopsis thaliana.
    Söderman E; Mattsson J; Svenson M; Borkird C; Engström P
    Plant Mol Biol; 1994 Oct; 26(1):145-54. PubMed ID: 7948864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.
    Bowman JL; Sakai H; Jack T; Weigel D; Mayer U; Meyerowitz EM
    Development; 1992 Mar; 114(3):599-615. PubMed ID: 1352237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Petal and stamen formation in petunia is regulated by the homeotic gene fbp1.
    Angenent GC; Franken J; Busscher M; Colombo L; van Tunen AJ
    Plant J; 1993 Jul; 4(1):101-12. PubMed ID: 8106081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS.
    Linke B; Nothnagel T; Börner T
    Plant J; 2003 Apr; 34(1):27-37. PubMed ID: 12662306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patterns of molecular evolution among paralogous floral homeotic genes.
    Lawton-Rauh AL; Buckler ES; Purugganan MD
    Mol Biol Evol; 1999 Aug; 16(8):1037-45. PubMed ID: 10474900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Floral expression of a gene encoding an E2-related ubiquitin-conjugating protein from Arabidopsis thaliana.
    Watts FZ; Butt N; Layfield P; Machuka J; Burke JF; Moore AL
    Plant Mol Biol; 1994 Oct; 26(1):445-51. PubMed ID: 7948890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.
    Fang ZW; Qi R; Li XF; Liu ZX
    Gene; 2014 Oct; 550(2):200-6. PubMed ID: 25149019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An intragenic suppressor of the Arabidopsis floral organ identity mutant apetala3-1 functions by suppressing defects in splicing.
    Yi Y; Jack T
    Plant Cell; 1998 Sep; 10(9):1465-77. PubMed ID: 9724693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants.
    Pnueli L; Hareven D; Rounsley SD; Yanofsky MF; Lifschitz E
    Plant Cell; 1994 Feb; 6(2):163-73. PubMed ID: 7908549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and characterization of a Brassica napus cDNA corresponding to a B-class floral development gene.
    Pylatuik JD; Lindsay DL; Davis AR; Bonham-Smith PC
    J Exp Bot; 2003 Oct; 54(391):2385-7. PubMed ID: 12909692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum.
    Winter KU; Saedler H; Theissen G
    Plant J; 2002 Aug; 31(4):457-75. PubMed ID: 12182704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.