These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 7948993)

  • 1. [MR angiography of the neck vessels with optimized linearly increasing flip angles].
    Nägele T; Klose U; Grodd W; Martos J
    Rofo; 1994 Nov; 161(5):399-403. PubMed ID: 7948993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D MR angiography with ramp-shaped flip-angle distribution.
    Martos J; Nägele T; Klose U; Petersen D; Voigt K
    Eur Radiol; 1996; 6(4):489-93. PubMed ID: 8798030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Magnetic resonance angiography of the vessels of the neck: the optimization of a dynamic technic during the rapid infusion of a paramagnetic contrast medium].
    Scarabino T; Carriero A; Giannatempo GM; Simeone A; Armillotta M; Bonomo L; Salvolini U
    Radiol Med; 1997 Oct; 94(4):325-8. PubMed ID: 9465238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of RF inhomogeneity at 3.0T on ramped RF excitation: application to 3D time-of-flight MR angiography of the intracranial arteries.
    Eissa AM; Wilman AH
    J Magn Reson Imaging; 2007 Mar; 25(3):466-72. PubMed ID: 17279502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of linearly increasing flip angles on 3D inflow MR angiography.
    Nägele T; Klose U; Grodd W; Petersen D; Tintera J
    Magn Reson Med; 1994 May; 31(5):561-6. PubMed ID: 8015412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.
    Davis WL; Warnock SH; Harnsberger HR; Parker DL; Chen CX
    J Comput Assist Tomogr; 1993; 17(1):15-21. PubMed ID: 8419427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable-angle uniform signal excitation (VUSE) for three-dimensional time-of-flight MR angiography.
    Priatna A; Paschal CB
    J Magn Reson Imaging; 1995; 5(4):421-7. PubMed ID: 7549204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential three-dimensional time-of-flight MR angiography of the carotid arteries: value of variable excitation and postprocessing in reducing venetian blind artifact.
    Ding X; Tkach JA; Ruggieri PR; Masaryk TJ
    AJR Am J Roentgenol; 1994 Sep; 163(3):683-8. PubMed ID: 8079868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conventional T2-Weighted Imaging to Detect High-Grade Stenosis and Occlusion of Internal Carotid Artery, Vertebral Artery, and Basilar Artery.
    Li Q; Tian CL; Yang YW; Lou X; Yu SY
    J Stroke Cerebrovasc Dis; 2015 Jul; 24(7):1591-6. PubMed ID: 25900410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Perioperative evaluation of internal carotid artery stenoses: value of multislab MR angiography].
    Vogl TJ; Kutter RW; Schön K; Juergens M; Hepp W; Balzer JO; Steger W; Felix R
    Zentralbl Chir; 1996; 121(12):1023-32. PubMed ID: 9092222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of vessel visibility in time-of-flight MR angiography of the brain.
    Shonai T; Carpenter JS; Lemieux SK; Harada K; Omori K; Kaneko N; Fukushima T
    J Magn Reson Imaging; 2008 Jun; 27(6):1362-70. PubMed ID: 18504756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Magnetic resonance angiography in stenosing-occlusive diseases of the carotid arteries: 3D with time of flight versus 3D with phase contrast].
    Scarabino T; Carriero A; Magarelli N; Nemore F; Florio F; D'Angelo V; Bonomo L; Salvolini U
    Radiol Med; 1997 Mar; 93(3):214-7. PubMed ID: 9221412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Clinical implication of parameter-optimized 3D-FISP MR angiography (MRA) in children with aortic coarctation: comparison with catheter angiography].
    Kramer U; Greil G; Dammann F; Schick F; Miller S; Fenchel M; Sieverding L; Claussen CD
    Rofo; 2004 Oct; 176(10):1458-65. PubMed ID: 15383978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-of-flight angiography at 7T using TONE double spokes with parallel transmission.
    Saib G; Gras V; Mauconduit F; Boulant N; Vignaud A; Brugières P; Le Bihan D; Le Brusquet L; Amadon A
    Magn Reson Imaging; 2019 Sep; 61():104-115. PubMed ID: 31108151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-of-flight magnetic resonance angiography at 7 T using venous saturation pulses with reduced flip angles.
    Johst S; Wrede KH; Ladd ME; Maderwald S
    Invest Radiol; 2012 Aug; 47(8):445-50. PubMed ID: 22766907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atherosclerotic disease distribution in carotid and vertebrobasilar arteries: clinical experience in 100 patients undergoing fluoro-triggered 3D Gd-MRA.
    Ersoy H; Watts R; Sanelli P; Zimmerman RD; Kent KC; Bush HL; Prince MR
    J Magn Reson Imaging; 2003 May; 17(5):545-58. PubMed ID: 12720264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Magnetic resonance angiography in vertebro-basilar ischemic accidents].
    Maeder P; Meuli R; Gudinchet F; Bogousslavsky J
    Praxis (Bern 1994); 1996 Feb; 85(9):272-7. PubMed ID: 8685571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear excitation profiles for three-dimensional inflow MR angiography.
    Nägele T; Klose U; Grodd W; Nüsslin F; Voigt K
    J Magn Reson Imaging; 1995; 5(4):416-20. PubMed ID: 7549203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dedicated head-neck coil in MR angiography of the supra-aortic arteries from the aortic arch to the circle of Willis.
    Strotzer M; Fellner C; Fraunhofer S; Gmeinwieser J; Albrich H; Seitz J; Feuerbach S
    Acta Radiol; 1998 May; 39(3):249-56. PubMed ID: 9571938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of selective arterial spin labeling using 1D and 2D tagging RF pulses.
    Konstandin S; Heiler PM; Scharf J; Schad LR
    Z Med Phys; 2011; 21(1):26-32. PubMed ID: 20884188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.