These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 7949661)

  • 1. Molecular modelling of protein-carbohydrate interactions. Understanding the specificities of two legume lectins towards oligosaccharides.
    Imberty A; Pérez S
    Glycobiology; 1994 Jun; 4(3):351-66. PubMed ID: 7949661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities.
    Chervenak MC; Toone EJ
    Biochemistry; 1995 Apr; 34(16):5685-95. PubMed ID: 7727428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of carbohydrate recognition by lectin II from Ulex europaeus, a protein with a promiscuous carbohydrate-binding site.
    Loris R; De Greve H; Dao-Thi MH; Messens J; Imberty A; Wyns L
    J Mol Biol; 2000 Aug; 301(4):987-1002. PubMed ID: 10966800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of weak protein-protein interactions in multivalent lectin-carbohydrate binding: crystal structure of cross-linked FRIL.
    Hamelryck TW; Moore JG; Chrispeels MJ; Loris R; Wyns L
    J Mol Biol; 2000 Jun; 299(4):875-83. PubMed ID: 10843844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of a legume lectin complexed with the human lactotransferrin N2 fragment, and with an isolated biantennary glycopeptide: role of the fucose moiety.
    Bourne Y; Mazurier J; Legrand D; Rougé P; Montreuil J; Spik G; Cambillau C
    Structure; 1994 Mar; 2(3):209-19. PubMed ID: 8069634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowledge-based modeling of a legume lectin and docking of the carbohydrate ligand: the Ulex europaeus lectin I and its interaction with fucose.
    Gohier A; Espinosa JF; Jimenez-Barbero J; Carrupt PA; Pérez S; Imberty A
    J Mol Graph; 1996 Dec; 14(6):322-7, 363-4. PubMed ID: 9195483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray crystal structure of a pea lectin-trimannoside complex at 2.6 A resolution.
    Rini JM; Hardman KD; Einspahr H; Suddath FL; Carver JP
    J Biol Chem; 1993 May; 268(14):10126-32. PubMed ID: 8486683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legume lectin structure.
    Loris R; Hamelryck T; Bouckaert J; Wyns L
    Biochim Biophys Acta; 1998 Mar; 1383(1):9-36. PubMed ID: 9546043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of asparagine-linked oligosaccharides by sequential lectin affinity chromatography.
    Yamamoto K; Tsuji T; Osawa T
    Mol Biotechnol; 1995 Feb; 3(1):25-36. PubMed ID: 7541703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational analysis of biantennary glycans and molecular modeling of their complexes with lentil lectin.
    Sokolowski T; Peters T; Pérez S; Imberty A
    J Mol Graph Model; 1997 Feb; 15(1):37-42, 54. PubMed ID: 9346821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site.
    Young NM; Oomen RP
    J Mol Biol; 1992 Dec; 228(3):924-34. PubMed ID: 1469724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of Canavalia gladiata agglutinin.
    Kojima K; Ogawa H; Seno N; Matsumoto I
    Carbohydr Res; 1991 Jun; 213():275-82. PubMed ID: 1933942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the fine saccharide-binding specificity of Dioclea grandiflora lectin and concanavalin A.
    Gupta D; Oscarson S; Raju TS; Stanley P; Toone EJ; Brewer CF
    Eur J Biochem; 1996 Dec; 242(2):320-6. PubMed ID: 8973650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of the sugar binding sites in carbohydrate binding proteins--a computer modeling study.
    Rao VS; Lam K; Qasba PK
    Int J Biol Macromol; 1998 Nov; 23(4):295-307. PubMed ID: 9849627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity.
    Sharma V; Surolia A
    J Mol Biol; 1997 Mar; 267(2):433-45. PubMed ID: 9096236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic binding studies of lectins from the diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides.
    Dam TK; Cavada BS; Grangeiro TB; Santos CF; Ceccatto VM; de Sousa FA; Oscarson S; Brewer CF
    J Biol Chem; 2000 May; 275(21):16119-26. PubMed ID: 10747944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray crystal structure determination and refinement at 1.9 A resolution of isolectin I from the seeds of Lathyrus ochrus.
    Bourne Y; Abergel C; Cambillau C; Frey M; Rougé P; Fontecilla-Camps JC
    J Mol Biol; 1990 Jul; 214(2):571-84. PubMed ID: 2380988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A.
    Imberty A; Hardman KD; Carver JP; Pérez S
    Glycobiology; 1991 Dec; 1(6):631-42. PubMed ID: 1822243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diocleinae lectins are a group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates.
    Dam TK; Cavada BS; Grangeiro TB; Santos CF; de Sousa FA; Oscarson S; Brewer CF
    J Biol Chem; 1998 May; 273(20):12082-8. PubMed ID: 9575151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chimeric lectin formed from Bauhinia purpurea lectin and Lens culinaris lectin recognizes a unique carbohydrate structure.
    Yamamoto K; Konami Y; Osawa T
    J Biochem; 2000 Jan; 127(1):129-35. PubMed ID: 10731675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.