BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7951012)

  • 1. [Molecular polymorphism of maltose fermentation in natural strains of Saccharomyces cerevisiae].
    Naumova ES; Naumov GI; Michels CA; Debabov VG
    Dokl Akad Nauk; 1994 May; 336(2):276-8. PubMed ID: 7951012
    [No Abstract]   [Full Text] [Related]  

  • 2. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae.
    Oda Y; Tonomura K
    Lett Appl Microbiol; 1996 Oct; 23(4):266-8. PubMed ID: 8987701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAL63 codes for a positive regulator of maltose fermentation in Saccharomyces cerevisiae.
    Chang YS; Dubin RA; Perkins E; Forrest D; Michels CA; Needleman RB
    Curr Genet; 1988 Sep; 14(3):201-9. PubMed ID: 3058330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The identification of the functional alpha-glucosidase gene in natural mutants of Saccharomyces cerevisiae and S. paradoxus that do not ferment maltose].
    Naumov GI; Naumova ES; Michels CA
    Dokl Akad Nauk SSSR; 1991; 316(5):1249-52. PubMed ID: 1884658
    [No Abstract]   [Full Text] [Related]  

  • 5. Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus.
    Naumov GI; Naumova ES; Michels CA
    Genetics; 1994 Mar; 136(3):803-12. PubMed ID: 8005435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of the MAL1 locus of Saccharomyces: identification and functional characterization of three genes.
    Cohen JD; Goldenthal MJ; Buchferer B; Marmur J
    Mol Gen Genet; 1984; 196(2):208-16. PubMed ID: 6387396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Saccharomyces cerevisiae strains from spontaneously fermented maize dough by profiles of assimilation, chromosome polymorphism, PCR and MAL genotyping.
    Hayford AE; Jespersen L
    J Appl Microbiol; 1999 Feb; 86(2):284-94. PubMed ID: 10063628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of Saccharomyces cerevisiae strains isolated from West African sorghum beer.
    van der Aa Kühle A; Jesperen L; Glover RL; Diawara B; Jakobsen M
    Yeast; 2001 Aug; 18(11):1069-79. PubMed ID: 11481677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation.
    Dietvorst J; Brandt A
    Yeast; 2008 Dec; 25(12):891-901. PubMed ID: 19160454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic segregation of natural Saccharomyces cerevisiae strains derived from spontaneous fermentation of Aglianico wine.
    Sipiczki M; Romano P; Capece A; Paraggio M
    J Appl Microbiol; 2004; 96(5):1169-75. PubMed ID: 15078535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative genetics of yeasts. XXII. The determination of alpha-methylglucoside fermentation by the maltose genes MAL6c2 and malx in the offspring of Saccharomyces cerevisiae N. C. Y. C. 74 strain].
    Naumov GI; Bashkirova EV
    Genetika; 1984 Sep; 20(9):1472-9. PubMed ID: 6389261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promotion of maltose fermentation at extremely low temperatures using a cryotolerant Saccharomyces cerevisiae strain immobilized on porous cellulosic material.
    Ganatsios V; Koutinas AA; Bekatorou A; Kanellaki M; Nigam P
    Enzyme Microb Technol; 2014 Nov; 66():56-9. PubMed ID: 25248700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genomes of fermentative Saccharomyces.
    Dequin S; Casaregola S
    C R Biol; 2011; 334(8-9):687-93. PubMed ID: 21819951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic control of chromosome stability in the yeast Saccharomyces cerevisiae.
    Kouprina NYu ; Pashina OB; Nikolaishwili NT; Tsouladze AM; Larionov VL
    Yeast; 1988 Dec; 4(4):257-69. PubMed ID: 3064490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries.
    Cocolin L; Pepe V; Comitini F; Comi G; Ciani M
    FEMS Yeast Res; 2004 Dec; 5(3):237-45. PubMed ID: 15556085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization in Saccharomyces cerevisiae.
    Donnini C; Lodi T; Ferrero I; Puglisi PP
    Yeast; 1992 Feb; 8(2):83-93. PubMed ID: 1561839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):109-15. PubMed ID: 20180115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of cell wall polysaccharide from maltose by a strain of Saccharomyces cerevisiae incapable of maltose fermentation.
    Okada H; Tabata S; Fujita T; Hizukuri S
    Biochim Biophys Acta; 1973 Mar; 304(1):20-31. PubMed ID: 4573202
    [No Abstract]   [Full Text] [Related]  

  • 19. Ornithine decarboxylase in Saccharomyces cerevisiae: chromosomal assignment and genetic mapping of the SPE1 gene.
    Xie QW; Tabor CW; Tabor H
    Yeast; 1990; 6(6):455-60. PubMed ID: 2080662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the petite mutation on maltose and alpha-methylgucoside fermentation inSaccharomyces cerevisiae.
    Khan NA; Greener A
    Mol Gen Genet; 1977 Jan; 150(1):107-8. PubMed ID: 319340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.