These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae. Oda Y; Tonomura K Lett Appl Microbiol; 1996 Oct; 23(4):266-8. PubMed ID: 8987701 [TBL] [Abstract][Full Text] [Related]
3. MAL63 codes for a positive regulator of maltose fermentation in Saccharomyces cerevisiae. Chang YS; Dubin RA; Perkins E; Forrest D; Michels CA; Needleman RB Curr Genet; 1988 Sep; 14(3):201-9. PubMed ID: 3058330 [TBL] [Abstract][Full Text] [Related]
4. [The identification of the functional alpha-glucosidase gene in natural mutants of Saccharomyces cerevisiae and S. paradoxus that do not ferment maltose]. Naumov GI; Naumova ES; Michels CA Dokl Akad Nauk SSSR; 1991; 316(5):1249-52. PubMed ID: 1884658 [No Abstract] [Full Text] [Related]
5. Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus. Naumov GI; Naumova ES; Michels CA Genetics; 1994 Mar; 136(3):803-12. PubMed ID: 8005435 [TBL] [Abstract][Full Text] [Related]
6. Mutational analysis of the MAL1 locus of Saccharomyces: identification and functional characterization of three genes. Cohen JD; Goldenthal MJ; Buchferer B; Marmur J Mol Gen Genet; 1984; 196(2):208-16. PubMed ID: 6387396 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Saccharomyces cerevisiae strains from spontaneously fermented maize dough by profiles of assimilation, chromosome polymorphism, PCR and MAL genotyping. Hayford AE; Jespersen L J Appl Microbiol; 1999 Feb; 86(2):284-94. PubMed ID: 10063628 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of Saccharomyces cerevisiae strains isolated from West African sorghum beer. van der Aa Kühle A; Jesperen L; Glover RL; Diawara B; Jakobsen M Yeast; 2001 Aug; 18(11):1069-79. PubMed ID: 11481677 [TBL] [Abstract][Full Text] [Related]
9. Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation. Dietvorst J; Brandt A Yeast; 2008 Dec; 25(12):891-901. PubMed ID: 19160454 [TBL] [Abstract][Full Text] [Related]
10. Genetic segregation of natural Saccharomyces cerevisiae strains derived from spontaneous fermentation of Aglianico wine. Sipiczki M; Romano P; Capece A; Paraggio M J Appl Microbiol; 2004; 96(5):1169-75. PubMed ID: 15078535 [TBL] [Abstract][Full Text] [Related]
11. [Comparative genetics of yeasts. XXII. The determination of alpha-methylglucoside fermentation by the maltose genes MAL6c2 and malx in the offspring of Saccharomyces cerevisiae N. C. Y. C. 74 strain]. Naumov GI; Bashkirova EV Genetika; 1984 Sep; 20(9):1472-9. PubMed ID: 6389261 [TBL] [Abstract][Full Text] [Related]
12. Promotion of maltose fermentation at extremely low temperatures using a cryotolerant Saccharomyces cerevisiae strain immobilized on porous cellulosic material. Ganatsios V; Koutinas AA; Bekatorou A; Kanellaki M; Nigam P Enzyme Microb Technol; 2014 Nov; 66():56-9. PubMed ID: 25248700 [TBL] [Abstract][Full Text] [Related]
13. The genomes of fermentative Saccharomyces. Dequin S; Casaregola S C R Biol; 2011; 334(8-9):687-93. PubMed ID: 21819951 [TBL] [Abstract][Full Text] [Related]
14. Genetic control of chromosome stability in the yeast Saccharomyces cerevisiae. Kouprina NYu ; Pashina OB; Nikolaishwili NT; Tsouladze AM; Larionov VL Yeast; 1988 Dec; 4(4):257-69. PubMed ID: 3064490 [TBL] [Abstract][Full Text] [Related]
15. Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. Cocolin L; Pepe V; Comitini F; Comi G; Ciani M FEMS Yeast Res; 2004 Dec; 5(3):237-45. PubMed ID: 15556085 [TBL] [Abstract][Full Text] [Related]
16. IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization in Saccharomyces cerevisiae. Donnini C; Lodi T; Ferrero I; Puglisi PP Yeast; 1992 Feb; 8(2):83-93. PubMed ID: 1561839 [TBL] [Abstract][Full Text] [Related]
17. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2010 Jun; 87(1):109-15. PubMed ID: 20180115 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of cell wall polysaccharide from maltose by a strain of Saccharomyces cerevisiae incapable of maltose fermentation. Okada H; Tabata S; Fujita T; Hizukuri S Biochim Biophys Acta; 1973 Mar; 304(1):20-31. PubMed ID: 4573202 [No Abstract] [Full Text] [Related]
19. Ornithine decarboxylase in Saccharomyces cerevisiae: chromosomal assignment and genetic mapping of the SPE1 gene. Xie QW; Tabor CW; Tabor H Yeast; 1990; 6(6):455-60. PubMed ID: 2080662 [TBL] [Abstract][Full Text] [Related]
20. Effect of the petite mutation on maltose and alpha-methylgucoside fermentation inSaccharomyces cerevisiae. Khan NA; Greener A Mol Gen Genet; 1977 Jan; 150(1):107-8. PubMed ID: 319340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]