These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 7951041)
1. On the hsp26 of Saccharomyces cerevisiae. Silva JT; Verícimo MA; Floriano WB; Dutra MB; Panek AD Biochem Mol Biol Int; 1994 May; 33(2):211-20. PubMed ID: 7951041 [TBL] [Abstract][Full Text] [Related]
2. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Bentley NJ; Fitch IT; Tuite MF Yeast; 1992 Feb; 8(2):95-106. PubMed ID: 1561840 [TBL] [Abstract][Full Text] [Related]
3. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. Haslbeck M; Ignatiou A; Saibil H; Helmich S; Frenzl E; Stromer T; Buchner J J Mol Biol; 2004 Oct; 343(2):445-55. PubMed ID: 15451672 [TBL] [Abstract][Full Text] [Related]
4. Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest. Ma P; Winderickx J; Nauwelaers D; Dumortier F; De Doncker A; Thevelein JM; Van Dijck P Yeast; 1999 Aug; 15(11):1097-109. PubMed ID: 10455233 [TBL] [Abstract][Full Text] [Related]
5. Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26. Vianna CR; Ferreira MC; Silva CL; Tanghe A; Neves MJ; Thevelein JM; Rosa CA; Van Dijck P J Mol Microbiol Biotechnol; 2010; 19(3):140-6. PubMed ID: 20924200 [TBL] [Abstract][Full Text] [Related]
6. Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Franzmann TM; Menhorn P; Walter S; Buchner J Mol Cell; 2008 Feb; 29(2):207-16. PubMed ID: 18243115 [TBL] [Abstract][Full Text] [Related]
7. Role of RAS2 in recovery from chronic stress: effect on yeast life span. Shama S; Kirchman PA; Jiang JC; Jazwinski SM Exp Cell Res; 1998 Dec; 245(2):368-78. PubMed ID: 9851878 [TBL] [Abstract][Full Text] [Related]
8. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. Xue Y; Batlle M; Hirsch JP EMBO J; 1998 Apr; 17(7):1996-2007. PubMed ID: 9524122 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Jones DL; Petty J; Hoyle DC; Hayes A; Ragni E; Popolo L; Oliver SG; Stateva LI Physiol Genomics; 2003 Dec; 16(1):107-18. PubMed ID: 14570984 [TBL] [Abstract][Full Text] [Related]
10. Known heat-shock proteins are not responsible for stress-induced rapid degradation of ribosomal protein mRNAs in yeast. Galego L; Barahona I; Alves AP; Vreken P; Raué HA; Planta RJ; Rodrigues-Pousada C Yeast; 1993 Jun; 9(6):583-8. PubMed ID: 8346674 [TBL] [Abstract][Full Text] [Related]
11. The cloning and characterization of the CDC50 gene family in Saccharomyces cerevisiae. Radji M; Kim JM; Togan T; Yoshikawa H; Shirahige K Yeast; 2001 Feb; 18(3):195-205. PubMed ID: 11180453 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional derepression of the Saccharomyces cerevisiae HSP26 gene during heat shock. Susek RE; Lindquist S Mol Cell Biol; 1990 Dec; 10(12):6362-73. PubMed ID: 2123293 [TBL] [Abstract][Full Text] [Related]
13. SHC1, a high pH inducible gene required for growth at alkaline pH in Saccharomyces cerevisiae. Hong SK; Han SB; Snyder M; Choi EY Biochem Biophys Res Commun; 1999 Feb; 255(1):116-22. PubMed ID: 10082665 [TBL] [Abstract][Full Text] [Related]
14. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant. Bai C; Chan FY; Wang Y Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072 [TBL] [Abstract][Full Text] [Related]
15. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding. Saltsman KA; Prentice HL; Kingston RE Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818 [TBL] [Abstract][Full Text] [Related]
16. HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Praekelt UM; Meacock PA Mol Gen Genet; 1990 Aug; 223(1):97-106. PubMed ID: 2175390 [TBL] [Abstract][Full Text] [Related]
17. The intracellular location of yeast heat-shock protein 26 varies with metabolism. Rossi JM; Lindquist S J Cell Biol; 1989 Feb; 108(2):425-39. PubMed ID: 2645298 [TBL] [Abstract][Full Text] [Related]
18. Structure and expression of a yeast gene encoding the small heat-shock protein Hsp26. Bossier P; Fitch IT; Boucherie H; Tuite MF Gene; 1989 May; 78(2):323-30. PubMed ID: 2673926 [TBL] [Abstract][Full Text] [Related]
19. hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is without a demonstrable function. Susek RE; Lindquist SL Mol Cell Biol; 1989 Nov; 9(11):5265-71. PubMed ID: 2689876 [TBL] [Abstract][Full Text] [Related]
20. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Shin DY; Matsumoto K; Iida H; Uno I; Ishikawa T Mol Cell Biol; 1987 Jan; 7(1):244-50. PubMed ID: 3031463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]