These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7951139)

  • 1. On the mechanism of inactivation of active papain by ascorbic acid in the presence of cupric ions.
    Kanazawa H; Fujimoto S; Ohara A
    Biol Pharm Bull; 1994 Jun; 17(6):789-93. PubMed ID: 7951139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of radical scavengers on the inactivation of papain by ascorbic acid in the presence of cupric ions.
    Kanazawa H; Fujimoto S; Ohara A
    Biol Pharm Bull; 1994 Apr; 17(4):476-81. PubMed ID: 8069251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific inactivation of papain by ascorbic acid in the presence of cupric ions.
    Kanazawa H; Fujimoto S; Ohara A
    Biol Pharm Bull; 1993 Jan; 16(1):11-6. PubMed ID: 8369744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of cholinesterase by ascorbic acid in the presence of cupric ions: a possible mechanism for the inactivation of an enzyme by the metal-catalyzed oxidation system.
    Kanazawa H; Fujimoto S; Ohara A
    Biol Pharm Bull; 1995 Sep; 18(9):1179-83. PubMed ID: 8845800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative inactivation of an extramitochondrial acetyl-CoA hydrolase by autoxidation of L-ascorbic acid.
    Nakanishi Y; Isohashi F; Matsunaga T; Sakamoto Y
    Eur J Biochem; 1985 Oct; 152(2):337-42. PubMed ID: 2865135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the inactivation of soluble and immobilized papain by the ascorbic acid-Cu2+ system: a model to propose the effect of free radicals on membrane-bound enzymes in vivo.
    Hussain S; Noor R; Iqbal J
    Biotechnol Appl Biochem; 2001 Dec; 34(3):205-9. PubMed ID: 11730489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative inactivation of gastric peroxidase by site-specific generation of hydroxyl radical and its role in stress-induced gastric ulceration.
    Das D; Bandyopadhyay D; Banerjee RK
    Free Radic Biol Med; 1998 Feb; 24(3):460-9. PubMed ID: 9438559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the inhibition of catalase by ascorbate. Roles of active oxygen species, copper and semidehydroascorbate.
    Davison AJ; Kettle AJ; Fatur DJ
    J Biol Chem; 1986 Jan; 261(3):1193-200. PubMed ID: 3003060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper.
    Shinar E; Navok T; Chevion M
    J Biol Chem; 1983 Dec; 258(24):14778-83. PubMed ID: 6317671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate-induced oxidative inactivation of Zn2+-glycerophosphocholine cholinephosphodiesterase.
    Sok DE
    J Neurochem; 1998 Mar; 70(3):1167-74. PubMed ID: 9489738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-catalyzed oxidation and cleavage of octopus glutathione transferase by the Cu(II)-ascorbate system.
    Tang SS; Lin CC; Chang GG
    Free Radic Biol Med; 1996; 21(7):955-64. PubMed ID: 8937881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin.
    Kocha T; Yamaguchi M; Ohtaki H; Fukuda T; Aoyagi T
    Biochim Biophys Acta; 1997 Feb; 1337(2):319-26. PubMed ID: 9048910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photooxidation of histidine and tryptophan residues of papain in the presence of methylene blue.
    Okumura K; Murachi T
    J Biochem; 1975 May; 77(5):913-8. PubMed ID: 239935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of heart dihydrolipoamide dehydrogenase by copper Fenton systems. Effect of thiol compounds and metal chelators.
    Gutierrez-Correa J; Stoppani AO
    Free Radic Res; 1995 Mar; 22(3):239-50. PubMed ID: 7757200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catecholamines enhance dihydrolipoamide dehydrogenase inactivation by the copper Fenton system. Enzyme protection by copper chelators.
    Correa JG; Stoppani AO
    Free Radic Res; 1996 Apr; 24(4):311-22. PubMed ID: 8731015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative inactivation of paraoxonase1, an antioxidant protein and its effect on antioxidant action.
    Nguyen SD; Sok DE
    Free Radic Res; 2003 Dec; 37(12):1319-30. PubMed ID: 14753756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of histamine in the presence of ascorbic acid and Cu2+ ion; involvement of hydrogen peroxide.
    Yamamoto I; Ohmori H
    J Pharmacobiodyn; 1981 Jan; 4(1):15-9. PubMed ID: 7277189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic study on the DNA-breaking actions of ascorbic acid and triose reductone in the presence of Cu2+.
    Shinohara K; So M; Nonaka M; Nishiyama K; Murakami H; Omura H
    J Nutr Sci Vitaminol (Tokyo); 1983 Aug; 29(4):481-8. PubMed ID: 6644387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-dependent metal-catalyzed oxidation of copper, zinc superoxide dismutase.
    Kwon OJ; Lee SM; Floyd RA; Park JW
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):249-56. PubMed ID: 9748611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals.
    Fry SC
    Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):507-15. PubMed ID: 9601081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.