These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7951139)

  • 21. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants.
    Gutteridge JM; Wilkins S
    Biochim Biophys Acta; 1983 Aug; 759(1-2):38-41. PubMed ID: 6192847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of dehydroascorbate in rabbit erythrocyte hexokinase inactivation induced by ascorbic acid/Fe(II).
    Fiorani M; Saltarelli R; De Sanctis R; Palma F; Ceccaroli P; Stocchi V
    Arch Biochem Biophys; 1996 Oct; 334(2):357-61. PubMed ID: 8900411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cu2+-catalyzed oxidative degradation of thyroglobulin.
    Lee HJ; Sok DE
    Free Radic Res; 2000 Oct; 33(4):359-68. PubMed ID: 11022845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. delta-Aminolevulinate dehydratase inhibition by ascorbic acid is mediated by an oxidation system existing in the hepatic supernatant.
    Beber FA; Wollmeister J; Brigo MJ; Silva MC; Pereira CN; Rocha JB
    Int J Vitam Nutr Res; 1998; 68(3):181-8. PubMed ID: 9637949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct mechanisms of site-specific DNA damage induced by endogenous reductants in the presence of iron(III) and copper(II).
    Oikawa S; Kawanishi S
    Biochim Biophys Acta; 1998 Jul; 1399(1):19-30. PubMed ID: 9714716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the mechanism of non-turnover-dependent inactivation of purified human 5-lipoxygenase. Inactivation by H2O2 and inhibition by metal ions.
    Percival MD; Denis D; Riendeau D; Gresser MJ
    Eur J Biochem; 1992 Nov; 210(1):109-17. PubMed ID: 1446663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Inactivation of myocardial dihydrolipoamide dehydrogenase by Cu(II) and hydrogen peroxide].
    Gutiérrez Correa J; Stoppani AO
    Medicina (B Aires); 1994; 54(4):319-30. PubMed ID: 7715430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of hydrogen peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as explored by immuno-spin trapping: the role of copper- and carbonate radical anion-mediated oxidations.
    Ramirez DC; Gomez Mejiba SE; Mason RP
    Free Radic Biol Med; 2005 Jan; 38(2):201-14. PubMed ID: 15607903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ascorbic, isoascorbic and dehydroascorbic acids on the growth and survival of Campylobacter jejuni.
    Juven BJ; Kanner J
    J Appl Bacteriol; 1986 Oct; 61(4):339-45. PubMed ID: 3781941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pro-oxidative activity of SOD and nitroxide SOD mimics.
    Offer T; Russo A; Samuni A
    FASEB J; 2000 Jun; 14(9):1215-23. PubMed ID: 10834943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Irreversible inactivation of purple acid phosphatase by hydrogen peroxide and ascorbate.
    Beck JL; Durack MC; Hamilton SE; de Jersey J
    J Inorg Biochem; 1999 Apr; 73(4):245-52. PubMed ID: 10376348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of inactivation of bacteriophage MS2 containing single-stranded RNA by ascorbic acid.
    Murata A; Uike M
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(5):347-54. PubMed ID: 827603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alkaline phosphatase inactivation by mixed function oxidation systems.
    Mordente A; Miggiano GA; Martorana GE; Meucci E; Santini SA; Castelli A
    Arch Biochem Biophys; 1987 Oct; 258(1):176-85. PubMed ID: 2821917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inactivation of mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals.
    Cataldi de Flombaum MA; Stoppani AO
    Biochem Int; 1986 Jun; 12(6):785-93. PubMed ID: 3017349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inactivation of intestinal alkaline phosphatase by inositol hexaphosphate-Cu (II) coordinate complexes.
    Martin CJ; Evans WJ
    J Inorg Biochem; 1991 May; 42(3):161-75. PubMed ID: 1880498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation and repair of papain sulfenic acid.
    Lin WS; Armstrong DA; Gaucher GM
    Can J Biochem; 1975 Mar; 53(3):298-307. PubMed ID: 1125817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative inactivation of brain alkaline phosphatase responsible for hydrolysis of phosphocholine.
    Sok DE
    J Neurochem; 1999 Jan; 72(1):355-62. PubMed ID: 9886088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability and proteolytic activity of papain in reverse micellar and aqueous media: a kinetic and spectroscopic study.
    Vicente LC; Aires-Barros R; Empis JM
    J Chem Technol Biotechnol; 1994 Jul; 60(3):291-7. PubMed ID: 7764994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide.
    Multhaup G; Ruppert T; Schlicksupp A; Hesse L; Bill E; Pipkorn R; Masters CL; Beyreuther K
    Biochemistry; 1998 May; 37(20):7224-30. PubMed ID: 9585534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.