These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 7951139)
61. Ascorbate and Cu(II)-induced oxidative degradation of high-molar-mass hyaluronan. Pro- and antioxidative effects of some thiols. Valachova K; Hrabarova E; Drafi F; Juranek I; Bauerova K; Priesolova E; Nagy M; Soltes L Neuro Endocrinol Lett; 2010; 31 Suppl 2():101-4. PubMed ID: 21187839 [TBL] [Abstract][Full Text] [Related]
62. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Shirahata S; Kabayama S; Nakano M; Miura T; Kusumoto K; Gotoh M; Hayashi H; Otsubo K; Morisawa S; Katakura Y Biochem Biophys Res Commun; 1997 May; 234(1):269-74. PubMed ID: 9169001 [TBL] [Abstract][Full Text] [Related]
64. Mechanism of inactivation of bacteriophage deltaA containing single-stranded DNA by ascorbic acid. Murata A; Oyadomari R; Ohashi T; Kitagawa K J Nutr Sci Vitaminol (Tokyo); 1975; 21(4):261-9. PubMed ID: 1214179 [TBL] [Abstract][Full Text] [Related]
65. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Samuni A; Aronovitch J; Godinger D; Chevion M; Czapski G Eur J Biochem; 1983 Dec; 137(1-2):119-24. PubMed ID: 6317379 [TBL] [Abstract][Full Text] [Related]
67. Inactivation of the mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals: role of thiol groups. Cataldi de Flombaum MA; Stoppani AO Biochem Int; 1987 Jun; 14(6):1035-41. PubMed ID: 2968797 [TBL] [Abstract][Full Text] [Related]
68. Site-specific and bulk-phase generation of hydroxyl radicals in the presence of cupric ions and thiol compounds. van Steveninck J; van der Zee J; Dubbelman TM Biochem J; 1985 Nov; 232(1):309-11. PubMed ID: 3936485 [TBL] [Abstract][Full Text] [Related]
69. A kinetic and fluorimetric investigation of papain modified at tryptophan-69 and -177 by N-bromosuccinimide. Lowe G; Whitworth AS Biochem J; 1974 Aug; 141(2):503-15. PubMed ID: 4455219 [TBL] [Abstract][Full Text] [Related]
70. The chemical modification of papain with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. Perfetti RB; Anderson CD; Hall PL Biochemistry; 1976 Apr; 15(8):1735-43. PubMed ID: 1268194 [TBL] [Abstract][Full Text] [Related]
71. The bactericidal effect of isoascorbic acid combined with mild heat. Mackey BM; Seymour DA J Appl Bacteriol; 1989 Dec; 67(6):629-38. PubMed ID: 2613595 [TBL] [Abstract][Full Text] [Related]
72. Mechanism of HRP-catalyzed nitrite oxidation by H Samuni A; Maimon E; Goldstein S Free Radic Biol Med; 2017 Jul; 108():832-839. PubMed ID: 28495446 [TBL] [Abstract][Full Text] [Related]
73. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Li Y; Trush MA Carcinogenesis; 1993 Jul; 14(7):1303-11. PubMed ID: 8392444 [TBL] [Abstract][Full Text] [Related]
74. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Aruoma OI; Halliwell B; Gajewski E; Dizdaroglu M Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):601-4. PubMed ID: 1899997 [TBL] [Abstract][Full Text] [Related]
75. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid. Boatright WL Food Chem; 2016 Apr; 196():1361-7. PubMed ID: 26593628 [TBL] [Abstract][Full Text] [Related]
76. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Dizdaroglu M; Rao G; Halliwell B; Gajewski E Arch Biochem Biophys; 1991 Mar; 285(2):317-24. PubMed ID: 1654771 [TBL] [Abstract][Full Text] [Related]
77. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain. Thomas MP; Topham CM; Kowlessur D; Mellor GW; Thomas EW; Whitford D; Brocklehurst K Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):805-20. PubMed ID: 8010964 [TBL] [Abstract][Full Text] [Related]
78. Inhibition of spinach chloroplast F0F1 by an Fe2+/ascorbate/H2O2 system. Ribeiro AS; Souza MO; Scofano HM; Creczynski-Pasa TB; Mignaco JA Plant Physiol Biochem; 2007; 45(10-11):750-6. PubMed ID: 17870588 [TBL] [Abstract][Full Text] [Related]
79. Function of Cu2+ on the DNA-breaking actions of ascorbic acid and triose reductone. Shinohara K; So M; Nonaka M; Nishiyama K; Murakami H; Omura H J Nutr Sci Vitaminol (Tokyo); 1983 Aug; 29(4):489-95. PubMed ID: 6644388 [TBL] [Abstract][Full Text] [Related]
80. Stimulatory and inhibitory actions of proteins and amino acids on copper-catalysed free radical generation in the bulk phase. Simpson JA; Dean RT Free Radic Res Commun; 1990; 10(4-5):303-12. PubMed ID: 2289696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]