These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7951139)

  • 81. Stability of native and covalently modified papain.
    Rajalakshmi N; Sundaram PV
    Protein Eng; 1995 Oct; 8(10):1039-47. PubMed ID: 8771185
    [TBL] [Abstract][Full Text] [Related]  

  • 82. lambda DNA-fragmenting actions of ascorbic acid and triose reductone in the presence of Cu2+.
    Shinohara K; So M; Nonaka M; Nishiyama K; Murakami H; Omura H
    J Nutr Sci Vitaminol (Tokyo); 1983 Dec; 29(6):671-8. PubMed ID: 6233412
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications.
    Barlow JN; Zhang Z; John P; Baldwin JE; Schofield CJ
    Biochemistry; 1997 Mar; 36(12):3563-9. PubMed ID: 9132007
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Stabilizing effect of chemical additives against oxidation of lactate dehydrogenase.
    Andersson MM; Breccia JD; Hatti-Kaul R
    Biotechnol Appl Biochem; 2000 Dec; 32(3):145-53. PubMed ID: 11115385
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Water disinfection with the hydrogen peroxide-ascorbic acid-copper (II) system.
    Ragab-Depre NJ
    Appl Environ Microbiol; 1982 Sep; 44(3):555-60. PubMed ID: 7138000
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The repair, protection and sensitization of papain with respect to inactivation by H2O2 and OH: effects of dithiothreitol, penicillamine, cystine and penicillamine disulphide.
    Lal M; Lin WS; Gaucher GM; Armstrong DA
    Int J Radiat Biol Relat Stud Phys Chem Med; 1975 Dec; 28(6):549-64. PubMed ID: 1082864
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Protection by histidine against oxidative inactivation of AMP deaminase in yeast.
    Murakami K; Onoda Y; Kimura J; Yoshino M
    Biochem Mol Biol Int; 1997 Aug; 42(5):1063-9. PubMed ID: 9285075
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Vit C.Fe(III) induced loss of the covalently bound phosphate and enzyme activity of phosphoglucomutase.
    Deshpande VV; Joshi JG
    J Biol Chem; 1985 Jan; 260(2):757-64. PubMed ID: 3155731
    [TBL] [Abstract][Full Text] [Related]  

  • 89. ON THE INACTIVATION OF ASCORBIC ACID OXIDASE.
    Powers WH; Dawson CR
    J Gen Physiol; 1944 Jan; 27(3):181-99. PubMed ID: 19873383
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Influence of polyhydroxylic cosolvents on papain thermostability.
    Lozano P; Cano J; Iborra JL; Manjón A
    Enzyme Microb Technol; 1993 Oct; 15(10):868-73. PubMed ID: 7764105
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Standardization of papain reagents by measurement of active sites using a synthetic inhibitor, E-64.
    Scott ML; Whitton CM
    Transfusion; 1988; 28(1):24-8. PubMed ID: 3341061
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Inhibition of Papaya latex papain by photosensitive inhibitors. 1-(4,5-dimethoxy-2-nitrophenyl)-2-nitroethene and 1,1-dicyano-2-(4,5-dimethoxy-2-nitrophenyl)-ethene.
    Golan R; Zehavi U; Naim M; Patchornik A; Smirnoff P; Herchman M
    J Protein Chem; 2000 Feb; 19(2):117-22. PubMed ID: 10945435
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The inactivation of papain by high LET radiations.
    Bisby RH; Cundall RB; Sims HE; Burns WG
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Sep; 46(3):261-8. PubMed ID: 6333408
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Generation process of cytosolic aspartate aminotransferase molecular forms by several treatments.
    Imperial S; Quiroga C; Busquets M; Cortés A; Bozal J
    J Protein Chem; 1988 Apr; 7(2):129-39. PubMed ID: 3255365
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Breaking action of ascorbic acid on nucleic acids.
    Omura H; Iiyama S; Tomita Y; Narazaki Y; Shinohara K
    J Nutr Sci Vitaminol (Tokyo); 1975; 21(4):237-9. PubMed ID: 1214177
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Oxidation of biologically active reducing substances by ozone.
    Menzel DB
    Arch Environ Health; 1971 Aug; 23(2):149-53. PubMed ID: 4397679
    [No Abstract]   [Full Text] [Related]  

  • 97. Studies on the active--SH group of papain and on the mechanism of papain activation by thiols.
    SANNER T; PIHL A
    J Biol Chem; 1963 Jan; 238():165-71. PubMed ID: 13976329
    [No Abstract]   [Full Text] [Related]  

  • 98. REVERSIBLE INACTIVATION OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES.
    McCarty M
    J Exp Med; 1945 May; 81(5):501-14. PubMed ID: 19871472
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Proteolytic activity and immunoreactivity of chemically modified papain.
    Fukal L; Marek M; Kás J
    Z Lebensm Unters Forsch; 1983; 176(6):430-3. PubMed ID: 6193659
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effect of thermal treatments on immunoreactivity and proteolytic activity of papain.
    Fukal L; Rauch P; Kás J
    Z Lebensm Unters Forsch; 1983; 176(6):426-9. PubMed ID: 6613358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.