These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 7952013)
1. Determination of chlorophenols in drinking water samples at the subnanogram per millilitre level by gas chromatography with atomic emission detection. Turnes MI; Rodriguez I; Mejuto MC; Cela R J Chromatogr A; 1994 Oct; 683(1):21-9. PubMed ID: 7952013 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of two solid-phase extraction procedures for the preconcentration of chlorophenols in drinking water. Rodríguez I; Mejuto MC; Bollaín MH; Cela R J Chromatogr A; 1997 Oct; 786(2):285-92. PubMed ID: 9408989 [TBL] [Abstract][Full Text] [Related]
3. Solid phase extractive preconcentration coupled to gas chromatography-atomic emission detection for the determination of chlorophenols in water samples. Elci L; Kolbe N; Elci SG; Anderson JT Talanta; 2011 Jul; 85(1):551-5. PubMed ID: 21645740 [TBL] [Abstract][Full Text] [Related]
4. [Determination of chlorophenols in drinking water by headspace solid phase microextraction and gas chromatography]. Zhang L; Li SM; Yue YL; Ying B; E X; Chen Y Wei Sheng Yan Jiu; 2006 Jan; 35(1):92-4. PubMed ID: 16598946 [TBL] [Abstract][Full Text] [Related]
5. Determination of Chlorophenols in Water Samples Using Solid-Phase Extraction Enrichment Procedure and Gas Chromatography Analysis. Ben Hassine S; Hammami B; Touil S; Driss MR Bull Environ Contam Toxicol; 2015 Nov; 95(5):654-60. PubMed ID: 26067701 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of solid-phase microextraction conditions for the determination of chlorophenols in honey samples using gas chromatography. Campillo N; Peñalver R; Hernández-Córdoba M J Chromatogr A; 2006 Aug; 1125(1):31-7. PubMed ID: 16769077 [TBL] [Abstract][Full Text] [Related]
8. Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. Fattahi N; Assadi Y; Hosseini MR; Jahromi EZ J Chromatogr A; 2007 Jul; 1157(1-2):23-9. PubMed ID: 17512936 [TBL] [Abstract][Full Text] [Related]
9. Use of a programmed temperature vaporizer and an in situ derivatization reaction to improve sensitivity in headspace-gas chromatography. Application to the analysis of chlorophenols in water. Pérez Pavón JL; Casas Ferreira AM; Fernández Laespada ME; Moreno Cordero B J Chromatogr A; 2009 Feb; 1216(7):1192-9. PubMed ID: 19124129 [TBL] [Abstract][Full Text] [Related]
10. Determination of chlorophenols in drinking water with high resolution gas chromatography-tandem mass spectrometry. Turnes I; Rodríguez I; García CM; Cela R J Chromatogr A; 1996 Sep; 743(2):283-92. PubMed ID: 8843660 [TBL] [Abstract][Full Text] [Related]
11. Direct acetylation and determination of chlorophenols in aqueous samples by gas chromatography coupled with an electron-capture detector. Al-Janabi KW; Alazawi FN; Mohammed MI; Kadhum AA; Mohamad AB J Chromatogr Sci; 2012 Aug; 50(7):564-8. PubMed ID: 22535910 [TBL] [Abstract][Full Text] [Related]
12. Direct determination of trace amounts of chlorophenols in fresh water, waste water and sea water. Abrahamsson K; Xie TM J Chromatogr; 1983 Nov; 279():199-208. PubMed ID: 6672031 [TBL] [Abstract][Full Text] [Related]
13. Some unique properties of gas chromatography coupled with atomic-emission detection. Andersson JT Anal Bioanal Chem; 2002 Jul; 373(6):344-55. PubMed ID: 12172669 [TBL] [Abstract][Full Text] [Related]
14. Ionic liquid based in situ solvent formation microextraction coupled to thermal desorption for chlorophenols determination in waters by gas chromatography/mass spectrometry. Galán-Cano F; Lucena R; Cárdenas S; Valcárcel M J Chromatogr A; 2012 Mar; 1229():48-54. PubMed ID: 22307153 [TBL] [Abstract][Full Text] [Related]
15. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection. Li X; Xue A; Chen H; Li S J Chromatogr A; 2013 Mar; 1280():9-15. PubMed ID: 23375770 [TBL] [Abstract][Full Text] [Related]
16. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. Peng JF; Liu JF; Hu XL; Jiang GB J Chromatogr A; 2007 Jan; 1139(2):165-70. PubMed ID: 17113589 [TBL] [Abstract][Full Text] [Related]
17. Optimization of headspace experimental factors to determine chlorophenols in water by means of headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry and parallel factor analysis. Morales R; Cruz Ortiz M; Sarabia LA Anal Chim Acta; 2012 Nov; 754():20-30. PubMed ID: 23140950 [TBL] [Abstract][Full Text] [Related]
18. Full automatic determination of chlorophenols in water using solid-phase microextraction/on-fiber derivatization and gas chromatography-mass spectrometry. Wang X; Chen R; Luan T; Lin L; Zou S; Yang Q J Sep Sci; 2012 Apr; 35(8):1017-26. PubMed ID: 22589163 [TBL] [Abstract][Full Text] [Related]
19. Gas chromatographic determination of chlorinated phenols in the form of various derivatives. Hajslová J; Kocourek V; Zemanová I; Pudil F; Davídek J J Chromatogr; 1988 May; 439(2):307-16. PubMed ID: 3403646 [TBL] [Abstract][Full Text] [Related]
20. Electro membrane extraction followed by low-density solvent based ultrasound-assisted emulsification microextraction combined with derivatization for determining chlorophenols and analysis by gas chromatography-mass spectrometry. Guo L; Lee HK J Chromatogr A; 2012 Jun; 1243():14-22. PubMed ID: 22579488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]