These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7952191)
1. Evidence for a polysaccharide-binding domain in Hormoconis resinae glucoamylase P: effects of its proteolytic removal on substrate specificity and inhibition by beta-cyclodextrin. Fagerström R Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2399-407. PubMed ID: 7952191 [TBL] [Abstract][Full Text] [Related]
2. Comparison of two glucoamylases from Hormoconis resinae. Fagerström R; Vainio A; Suoranta K; Pakula T; Kalkkinen N; Torkkeli H J Gen Microbiol; 1990 May; 136(5):913-20. PubMed ID: 2116499 [TBL] [Abstract][Full Text] [Related]
3. Interaction of beta-cyclodextrin with the granular starch binding domain of glucoamylase. Belshaw NJ; Williamson G Biochim Biophys Acta; 1991 May; 1078(1):117-20. PubMed ID: 2049377 [TBL] [Abstract][Full Text] [Related]
4. Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain. Le Gal-Coëffet MF; Jacks AJ; Sorimachi K; Williamson MP; Williamson G; Archer DB Eur J Biochem; 1995 Oct; 233(2):561-7. PubMed ID: 7588802 [TBL] [Abstract][Full Text] [Related]
5. Starch-binding domain of Aspergillus glucoamylase-I. Interaction with beta-cyclodextrin and maltoheptaose. Kusnadi AR; Chang HY; Nikolov ZL; Metzler DE; Metzler CM Ann N Y Acad Sci; 1994 May; 721():168-77. PubMed ID: 8010668 [TBL] [Abstract][Full Text] [Related]
6. Purification and specificity of recombinant Hormoconis resinae glucoamylase P and endogenous glucoamylase from Trichoderma reesei. Fagerström R Enzyme Microb Technol; 1994 Jan; 16(1):36-42. PubMed ID: 7764611 [TBL] [Abstract][Full Text] [Related]
7. Characterization, subsite mapping and partial amino acid sequence of glucoamylase from the filamentous fungus Trichoderma reesei. Fagerström R; Kalkkinen N Biotechnol Appl Biochem; 1995 Apr; 21(2):223-31. PubMed ID: 7718160 [TBL] [Abstract][Full Text] [Related]
8. Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae. Vainio AE; Torkkeli HT; Tuusa T; Aho SA; Fagerström BR; Korhola MP Curr Genet; 1993; 24(1-2):38-44. PubMed ID: 8358830 [TBL] [Abstract][Full Text] [Related]
9. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Fierobe HP; Stoffer BB; Frandsen TP; Svensson B Biochemistry; 1996 Jul; 35(26):8696-704. PubMed ID: 8679632 [TBL] [Abstract][Full Text] [Related]
10. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading. Sumitani J; Tottori T; Kawaguchi T; Arai M Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962 [TBL] [Abstract][Full Text] [Related]
11. Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase. Fukuda K; Teramoto Y; Goto M; Sakamoto J; Mitsuiki S; Hayashida S Biosci Biotechnol Biochem; 1992 Apr; 56(4):556-9. PubMed ID: 1368209 [TBL] [Abstract][Full Text] [Related]
12. Steady-state kinetic and calorimetric studies on the binding of Aspergillus niger glucoamylase with gluconolactone, 1-deoxynojirimycin, and beta-cyclodextrin. Tanaka A Biosci Biotechnol Biochem; 1996 Dec; 60(12):2055-8. PubMed ID: 8988638 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Sigurskjold BW; Svensson B; Williamson G; Driguez H Eur J Biochem; 1994 Oct; 225(1):133-41. PubMed ID: 7925430 [TBL] [Abstract][Full Text] [Related]
14. An extracellular glucoamylase produced by endophytic fungus EF6. Tangngamsakul P; Karnchanatat A; Sihanonth P; Sangvanich P Prikl Biokhim Mikrobiol; 2011; 47(4):455-61. PubMed ID: 21950121 [TBL] [Abstract][Full Text] [Related]
15. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Structure; 1997 May; 5(5):647-61. PubMed ID: 9195884 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of extracellular alpha-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. De Mot R; Verachtert H Eur J Biochem; 1987 May; 164(3):643-54. PubMed ID: 3106037 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514 [TBL] [Abstract][Full Text] [Related]
18. A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity. Hua H; Luo H; Bai Y; Wang K; Niu C; Huang H; Shi P; Wang C; Yang P; Yao B PLoS One; 2014; 9(11):e113581. PubMed ID: 25415468 [TBL] [Abstract][Full Text] [Related]
19. Glucoamylase originating from Schwanniomyces occidentalis is a typical alpha-glucosidase. Sato F; Okuyama M; Nakai H; Mori H; Kimura A; Chiba S Biosci Biotechnol Biochem; 2005 Oct; 69(10):1905-13. PubMed ID: 16244441 [TBL] [Abstract][Full Text] [Related]
20. Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Tung JY; Chang MD; Chou WI; Liu YY; Yeh YH; Chang FY; Lin SC; Qiu ZL; Sun YJ Biochem J; 2008 Nov; 416(1):27-36. PubMed ID: 18588504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]