These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7952675)

  • 1. Exponentially tapered t-tube model of systemic arterial system in dogs.
    Chang KC; Tseng YZ; Lin YJ; Kuo TS; Chen HI
    Med Eng Phys; 1994 Sep; 16(5):370-8. PubMed ID: 7952675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exponentially tapered T-tube model in the characterization of arterial non-uniformity.
    Chang KC; Kuo TS
    J Theor Biol; 1996 Nov; 183(1):35-46. PubMed ID: 8959109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and physiological relevance of an exponentially tapered tube model of canine descending aortic circulation.
    Fogliardi R; Burattini R; Campbell KB
    Med Eng Phys; 1997 Apr; 19(3):201-11. PubMed ID: 9239639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective distributed compliance of the canine descending aorta estimated by modified T-tube model.
    Burattini R; Campbell KB
    Am J Physiol; 1993 Jun; 264(6 Pt 2):H1977-87. PubMed ID: 8322928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified asymmetric T-tube model to infer arterial wave reflection at the aortic root.
    Burattini R; Campbell KB
    IEEE Trans Biomed Eng; 1989 Aug; 36(8):805-14. PubMed ID: 2759639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two arterial effective reflecting sites may appear as one to the heart.
    Burattini R; Knowlen GG; Campbell KB
    Circ Res; 1991 Jan; 68(1):85-99. PubMed ID: 1984875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological relevance of uniform elastic tube-models to infer descending aortic wave reflection: a problem of identifiability.
    Burattini R; Campbell KB
    Ann Biomed Eng; 2000 May; 28(5):512-23. PubMed ID: 10925949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tapered vs. Uniform Tube-Load Modeling of Blood Pressure Wave Propagation in Human Aorta.
    Mousavi A; Tivay A; Finegan B; McMurtry MS; Mukkamala R; Hahn JO
    Front Physiol; 2019; 10():974. PubMed ID: 31447687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-domain formulation of asymmetric T-tube model of arterial system.
    Campbell KB; Burattini R; Bell DL; Kirkpatrick RD; Knowlen GG
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1761-74. PubMed ID: 2360669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes of arterial mechanical properties in rats: analysis using exponentially tapered T-tube model.
    Chang KC; Tsai YF; Chow CY; Peng YI; Chen TJ
    J Gerontol A Biol Sci Med Sci; 1998 Jul; 53(4):B274-80. PubMed ID: 18314557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance and wave reflection in arterial system: simulation with geometrically tapered T-tubes.
    Chang KC; Tseng YZ; Kuo TS; Chen HI
    Med Biol Eng Comput; 1995 Sep; 33(5):652-60. PubMed ID: 8523906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascending aortic impedance patterns in the kangaroo: their explanation and relation to pressure waveforms.
    Nichols WW; Avolio AP; O'Rourke MF
    Circ Res; 1986 Sep; 59(3):247-55. PubMed ID: 2945669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
    Boccadifuoco A; Mariotti A; Capellini K; Celi S; Salvetti MV
    Cardiovasc Eng Technol; 2018 Dec; 9(4):688-706. PubMed ID: 30357714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different methods for the determination of the true wave propagation coefficient, in rubber tubes and the canine thoracic aorta.
    Bertram CD; Gow BS; Greenwald SE
    Med Eng Phys; 1997 Apr; 19(3):212-22. PubMed ID: 9239640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instantaneous blood flow, impedance and elastic properties computed in man from aortic pulse waves.
    Tedgui AS; Levy BI; Sebag SR
    J Theor Biol; 1983 Apr; 101(3):345-54. PubMed ID: 6887946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the arterial wall by finite elements.
    Mosora F; Harmant A; Bernard C; Fossion A; Pochet T; Juchmes J; Cescotto S
    Arch Int Physiol Biochim Biophys; 1993; 101(3):185-91. PubMed ID: 7691211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of aortic impedance and wave reflection in ferrets and dogs.
    Burattini R; Campbell KB
    Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H244-55. PubMed ID: 11748069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New closed-form expressions for the estimation of arterial windkessel compliance.
    Gnudi G
    Comput Biol Med; 1998 May; 28(3):207-23. PubMed ID: 9784960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propofol alters left ventricular afterload as evaluated by aortic input impedance in dogs.
    Lowe D; Hettrick DA; Pagel PS; Warltier DC
    Anesthesiology; 1996 Feb; 84(2):368-76. PubMed ID: 8602668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comments on "Exponentially tapered T-tube model of systemic arterial system in dogs".
    Burattini R; Fogliardi R; Gobbi R
    Med Eng Phys; 1996 Jun; 18(4):333-8. PubMed ID: 8782192
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.