These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 7952883)
1. Mechanism of bile salt vasoactivity: dependence on calcium channels in vascular smooth muscle. Pak JM; Adeagbo AS; Triggle CR; Shaffer EA; Lee SS Br J Pharmacol; 1994 Aug; 112(4):1209-15. PubMed ID: 7952883 [TBL] [Abstract][Full Text] [Related]
2. Endothelium-dependent and BRL 34915-induced vasodilatation in rat isolated perfused mesenteric arteries: role of G-proteins, K+ and calcium channels. Adeagbo AS; Malik KU Br J Pharmacol; 1990 Jul; 100(3):427-34. PubMed ID: 2167732 [TBL] [Abstract][Full Text] [Related]
3. The effects of perfusion rate and NG-nitro-L-arginine methyl ester on cirazoline- and KCl-induced responses in the perfused mesenteric arterial bed of rats. Adeagbo AS; Tabrizchi R; Triggle CR Br J Pharmacol; 1994 Jan; 111(1):13-20. PubMed ID: 7912152 [TBL] [Abstract][Full Text] [Related]
4. Contribution of K+ channels to arachidonic acid-induced endothelium-dependent vasodilation in rat isolated perfused mesenteric arteries. Adeagbo AS; Malik KU J Pharmacol Exp Ther; 1991 Aug; 258(2):452-8. PubMed ID: 1650826 [TBL] [Abstract][Full Text] [Related]
5. The Curcumin-Induced Vasorelaxation in Rat Superior Mesenteric Arteries. Zhang H; Liu H; Chen Y; Zhang Y Ann Vasc Surg; 2018 Apr; 48():233-240. PubMed ID: 28943490 [TBL] [Abstract][Full Text] [Related]
6. Vasorelaxing action of rutaecarpine: effects of rutaecarpine on calcium channel activities in vascular endothelial and smooth muscle cells. Wang GJ; Wu XC; Chen CF; Lin LC; Huang YT; Shan J; Pang PK J Pharmacol Exp Ther; 1999 Jun; 289(3):1237-44. PubMed ID: 10336511 [TBL] [Abstract][Full Text] [Related]
7. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. Adeagbo AS; Triggle CR J Cardiovasc Pharmacol; 1993 Mar; 21(3):423-9. PubMed ID: 7681503 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological evidence for the activation of potassium channels as the mechanism involved in the hypotensive and vasorelaxant effect of dioclein in rat small resistance arteries. Côrtes SF; Rezende BA; Corriu C; Medeiros IA; Teixeira MM; Lopes MJ; Lemos VS Br J Pharmacol; 2001 Jul; 133(6):849-58. PubMed ID: 11454658 [TBL] [Abstract][Full Text] [Related]
9. Mesenteric arterial function in the rat in pregnancy: role of sympathetic and sensory-motor perivascular nerves, endothelium, smooth muscle, nitric oxide and prostaglandins. Ralevic V; Burnstock G Br J Pharmacol; 1996 Apr; 117(7):1463-70. PubMed ID: 8730740 [TBL] [Abstract][Full Text] [Related]
10. Effect of clenbuterol on non-endothelial nitric oxide release in rat mesenteric arteries and the involvement of beta-adrenoceptors. Marín J; Balfagón G Br J Pharmacol; 1998 Jun; 124(3):473-8. PubMed ID: 9647470 [TBL] [Abstract][Full Text] [Related]
11. The effects of a novel vasodilator, LP-805, on cytosolic Ca2+ concentrations and on tension in rabbit isolated femoral arteries. Ushio-Fukai M; Hirano K; Kanaide H Br J Pharmacol; 1994 Dec; 113(4):1173-82. PubMed ID: 7889270 [TBL] [Abstract][Full Text] [Related]
12. Estrogen receptor subtypes mediate distinct microvascular dilation and reduction in [Ca2+]I in mesenteric microvessels of female rat. Mazzuca MQ; Mata KM; Li W; Rangan SS; Khalil RA J Pharmacol Exp Ther; 2015 Feb; 352(2):291-304. PubMed ID: 25472954 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of prolonged vasorelaxation to ATP in the rat isolated mesenteric arterial bed. Ralevic V Br J Pharmacol; 2001 Feb; 132(3):685-92. PubMed ID: 11159721 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide-dependent and -independent vascular hyporeactivity in mesenteric arteries of portal hypertensive rats. Heinemann A; Wachter CH; Holzer P; Fickert P; Stauber RE Br J Pharmacol; 1997 Jul; 121(5):1031-7. PubMed ID: 9222564 [TBL] [Abstract][Full Text] [Related]
15. Possible role of Ca2+ channels in the vasodilating effect of 5beta-dihydrotestosterone in rat aorta. Perusquía M; Villalón CM Eur J Pharmacol; 1999 Apr; 371(2-3):169-78. PubMed ID: 10357254 [TBL] [Abstract][Full Text] [Related]
16. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
17. Taurochenodeoxycholate relaxes rat mesenteric arteries through activating eNOS: Comparing with glycochenodeoxycholate and tauroursodeoxycholate. Zhen CL; Yan J; Zhao Y; Li SL; Liu MY; Shen X; Li N; Zhang YH; Zhang YQ; Ma CY; Wang CG; Gao JL; Wei YY; Dong DL Eur J Pharmacol; 2016 Mar; 774():118-26. PubMed ID: 26851371 [TBL] [Abstract][Full Text] [Related]
18. Endothelial nitric oxide modulates perivascular sensory neurotransmission in the rat isolated mesenteric arterial bed. Ralevic V Br J Pharmacol; 2002 Sep; 137(1):19-28. PubMed ID: 12183327 [TBL] [Abstract][Full Text] [Related]
19. Calcium-dependent phospholipase A2 mediates the production of endothelium-derived hyperpolarizing factor in perfused rat mesenteric prearteriolar bed. Adeagbo AS; Henzel MK J Vasc Res; 1998; 35(1):27-35. PubMed ID: 9482693 [TBL] [Abstract][Full Text] [Related]
20. Paeonol induces vasodilatation in rat mesenteric artery via inhibiting extracellular Ca²⁺ influx and intracellular Ca²⁺ release. Zhang JY; Cao YX; Weng WL; Li YK; Zhao L Chin J Integr Med; 2013 Jul; 19(7):510-6. PubMed ID: 23818203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]