These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 7953587)

  • 21. Human v6: the medial motion area.
    Pitzalis S; Sereno MI; Committeri G; Fattori P; Galati G; Patria F; Galletti C
    Cereb Cortex; 2010 Feb; 20(2):411-24. PubMed ID: 19502476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Many areas in the human brain respond to visual motion.
    Dupont P; Orban GA; De Bruyn B; Verbruggen A; Mortelmans L
    J Neurophysiol; 1994 Sep; 72(3):1420-4. PubMed ID: 7807222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human brain regions involved in direction discrimination.
    Cornette L; Dupont P; Rosier A; Sunaert S; Van Hecke P; Michiels J; Mortelmans L; Orban GA
    J Neurophysiol; 1998 May; 79(5):2749-65. PubMed ID: 9582242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Higher order visual processing in macaque extrastriate cortex.
    Orban GA
    Physiol Rev; 2008 Jan; 88(1):59-89. PubMed ID: 18195083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque.
    Boussaoud D; Ungerleider LG; Desimone R
    J Comp Neurol; 1990 Jun; 296(3):462-95. PubMed ID: 2358548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. fMRI reveals a preference for near viewing in the human parieto-occipital cortex.
    Quinlan DJ; Culham JC
    Neuroimage; 2007 May; 36(1):167-87. PubMed ID: 17398117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: functional anatomy by positron emission tomography.
    Roland PE; Gulyás B
    Cereb Cortex; 1995; 5(1):79-93. PubMed ID: 7719132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex.
    Mentis MJ; Alexander GE; Grady CL; Horwitz B; Krasuski J; Pietrini P; Strassburger T; Hampel H; Schapiro MB; Rapoport SI
    Neuroimage; 1997 Feb; 5(2):116-28. PubMed ID: 9345542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural correlates of the stereokinetic effect revealed by functional magnetic resonance imaging.
    Yamamoto T; Takahashi S; Hanakawa T; Urayama S; Aso T; Fukuyama H; Ejima Y
    J Vis; 2008 Dec; 8(10):14.1-17. PubMed ID: 19146356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of dorsal and ventral stream development in biological motion perception.
    Lichtensteiger J; Loenneker T; Bucher K; Martin E; Klaver P
    Neuroreport; 2008 Dec; 19(18):1763-7. PubMed ID: 18955908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Going beyond the information given: the relation of illusory visual motion to brain activity.
    Zeki S; Watson JD; Frackowiak RS
    Proc Biol Sci; 1993 Jun; 252(1335):215-22. PubMed ID: 8394582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociation of object and spatial visual processing pathways in human extrastriate cortex.
    Haxby JV; Grady CL; Horwitz B; Ungerleider LG; Mishkin M; Carson RE; Herscovitch P; Schapiro MB; Rapoport SI
    Proc Natl Acad Sci U S A; 1991 Mar; 88(5):1621-5. PubMed ID: 2000370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement.
    Beer J; Blakemore C; Previc FH; Liotti M
    Exp Brain Res; 2002 Mar; 143(1):78-88. PubMed ID: 11907693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parkinson-related changes of activation in visuomotor brain regions during perceived forward self-motion.
    van der Hoorn A; Renken RJ; Leenders KL; de Jong BM
    PLoS One; 2014; 9(4):e95861. PubMed ID: 24755754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct mechanisms of form-from-motion perception in human extrastriate cortex.
    Blanke O; Brooks A; Mercier M; Spinelli L; Adriani M; Lavanchy L; Safran AB; Landis T
    Neuropsychologia; 2007 Mar; 45(4):644-53. PubMed ID: 17049953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Form-from-motion: MEG evidence for time course and processing sequence.
    Schoenfeld MA; Woldorff M; Düzel E; Scheich H; Heinze HJ; Mangun GR
    J Cogn Neurosci; 2003 Feb; 15(2):157-72. PubMed ID: 12676054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neural model of the temporal dynamics of figure-ground segregation in motion perception.
    Raudies F; Neumann H
    Neural Netw; 2010 Mar; 23(2):160-76. PubMed ID: 19931405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motion-from-hue activates area V5 of human visual cortex.
    Ffytche DH; Skidmore BD; Zeki S
    Proc Biol Sci; 1995 Jun; 260(1359):353-8. PubMed ID: 7630900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans.
    Vaina LM
    Biol Cybern; 1989; 61(5):347-59. PubMed ID: 2790066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing of V1/V2 and V5+ activations during coherent motion of dots: an MEG study.
    Prieto EA; Barnikol UB; Soler EP; Dolan K; Hesselmann G; Mohlberg H; Amunts K; Zilles K; Niedeggen M; Tass PA
    Neuroimage; 2007 Oct; 37(4):1384-95. PubMed ID: 17689986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.