BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7954087)

  • 1. Force-related neuronal activity in two regions of the primate ventral premotor cortex.
    Hepp-Reymond MC; Hüsler EJ; Maier MA; Ql HX
    Can J Physiol Pharmacol; 1994 May; 72(5):571-9. PubMed ID: 7954087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting properties of monkey somatosensory and motor cortex neurons activated during the control of force in precision grip.
    Wannier TM; Maier MA; Hepp-Reymond MC
    J Neurophysiol; 1991 Mar; 65(3):572-89. PubMed ID: 2051196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey.
    Cadoret G; Smith AM
    J Neurophysiol; 1997 Jan; 77(1):153-66. PubMed ID: 9120556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity in rostral motor cortex in response to predictable force-pulse perturbations in a precision grip task.
    Boudreau MJ; Smith AM
    J Neurophysiol; 2001 Sep; 86(3):1079-85. PubMed ID: 11535658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity in ventral and dorsal premotor cortex in response to predictable force-pulse perturbations in a precision grip task.
    Boudreau MJ; Brochier T; Paré M; Smith AM
    J Neurophysiol; 2001 Sep; 86(3):1067-78. PubMed ID: 11535657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-dependent force coding in motor and premotor cortical areas.
    Hepp-Reymond M; Kirkpatrick-Tanner M; Gabernet L; Qi HX; Weber B
    Exp Brain Res; 1999 Sep; 128(1-2):123-33. PubMed ID: 10473750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the monkey corticomotoneuronal system to the control of force in precision grip.
    Maier MA; Bennett KM; Hepp-Reymond MC; Lemon RN
    J Neurophysiol; 1993 Mar; 69(3):772-85. PubMed ID: 8463818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of isometric force in the "motor" thalamus.
    Anner-Baratti R; Allum JH; Hepp-Reymond MC
    Exp Brain Res; 1986; 63(3):567-80. PubMed ID: 3758268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements.
    Donoghue JP; Sanes JN; Hatsopoulos NG; Gaál G
    J Neurophysiol; 1998 Jan; 79(1):159-73. PubMed ID: 9425187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Input-output properties of hand-related cells in the ventral cingulate cortex in the monkey.
    Cadoret G; Smith AM
    J Neurophysiol; 1995 Jun; 73(6):2584-90. PubMed ID: 7666165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional properties of the primary motor cortex and ventral premotor cortex in the monkey during a visually guided jaw-movement task with a delay period.
    Yoshino K; Kawagishi S; Takatsuki Y; Amano N
    Brain Res; 2000 Jan; 852(2):414-23. PubMed ID: 10678769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of muscimol inactivation of small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip.
    Brochier T; Boudreau MJ; Paré M; Smith AM
    Exp Brain Res; 1999 Sep; 128(1-2):31-40. PubMed ID: 10473737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: A cluster analysis.
    Poliakov AV; Schieber MH
    J Neurophysiol; 1999 Dec; 82(6):3488-505. PubMed ID: 10601477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primate rubromotoneuronal cells: parametric relations and contribution to wrist movement.
    Mewes K; Cheney PD
    J Neurophysiol; 1994 Jul; 72(1):14-30. PubMed ID: 7965000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are extent and force independent movement parameters? Preparation- and movement-related neuronal activity in the monkey cortex.
    Riehle A; MacKay WA; Requin J
    Exp Brain Res; 1994; 99(1):56-74. PubMed ID: 7925796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task.
    Sergio LE; Kalaska JF
    J Neurophysiol; 1998 Sep; 80(3):1577-83. PubMed ID: 9744964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct projections from the ventral premotor cortex to the hindlimb region of the supplementary motor area in the macaque monkey.
    Tokuno H; Inase M
    Neurosci Lett; 1994 Apr; 171(1-2):159-62. PubMed ID: 8084480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex movements evoked by microstimulation of precentral cortex.
    Graziano MS; Taylor CS; Moore T
    Neuron; 2002 May; 34(5):841-51. PubMed ID: 12062029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticomotoneuronal contribution to the fractionation of muscle activity during precision grip in the monkey.
    Bennett KM; Lemon RN
    J Neurophysiol; 1996 May; 75(5):1826-42. PubMed ID: 8734583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation for movement: neural representations of intended direction in three motor areas of the monkey.
    Alexander GE; Crutcher MD
    J Neurophysiol; 1990 Jul; 64(1):133-50. PubMed ID: 2388061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.