BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7954613)

  • 1. Potassium loss during myocardial ischaemia and hypoxia: does lactate efflux play a role?
    Weiss JN; Shieh RC
    Cardiovasc Res; 1994 Aug; 28(8):1125-32. PubMed ID: 7954613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate transport in mammalian ventricle. General properties and relation to K+ fluxes.
    Shieh RC; Goldhaber JI; Stuart JS; Weiss JN
    Circ Res; 1994 May; 74(5):829-38. PubMed ID: 8156630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition.
    Weiss JN; Lamp ST; Shine KI
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1165-75. PubMed ID: 2468298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium efflux from the myocardium during hypoxia: role of lactate ions.
    Crake T; Kirby MS; Poole-Wilson PA
    Cardiovasc Res; 1987 Dec; 21(12):886-91. PubMed ID: 3455355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of effects of aprikalim and of hypoxic and ischaemic preconditioning on extracellular potassium accumulation, metabolism, and functional recovery of the globally ischaemic rat heart.
    Guo AC; Diacono J; Feuvray D
    Cardiovasc Res; 1994 Jun; 28(6):864-71. PubMed ID: 7923293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is lactate-induced myocardial ischaemic injury mediated by decreased pH or increased intracellular lactate?
    Cross HR; Clarke K; Opie LH; Radda GK
    J Mol Cell Cardiol; 1995 Jul; 27(7):1369-81. PubMed ID: 7473783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic changes and transsarcolemmal ion transport during total ischaemia of isolated rat ventricular myocytes.
    Fiolet JW; Schumacher CA; Baartscheer A; Coronel R
    Basic Res Cardiol; 1993; 88(5):396-410. PubMed ID: 8117246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of hypoxic K loss in rabbit ventricle.
    Shivkumar K; Deutsch NA; Lamp ST; Khuu K; Goldhaber JI; Weiss JN
    J Clin Invest; 1997 Oct; 100(7):1782-8. PubMed ID: 9312178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium loss from rabbit myocardium during hypoxia: evidence for passive efflux linked to anion extrusion.
    Gaspardone A; Shine KI; Seabrooke SR; Poole-Wilson PA
    J Mol Cell Cardiol; 1986 Apr; 18(4):389-99. PubMed ID: 3712449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute ischaemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischaemia.
    Tajima M; Katayose D; Bessho M; Isoyama S
    Cardiovasc Res; 1994 Mar; 28(3):312-9. PubMed ID: 8174150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of myocardial lactate efflux after a step in heart rate in isolated rabbit hearts.
    Hak JB; van Beek JH; van Wijhe MH; Westerhof N
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H2081-5. PubMed ID: 8285247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the inward rectifier IK1 in the myocardial response to hypoxia.
    Ruiz-Petrich E; de Lorenzi F; Chartier D
    Cardiovasc Res; 1991 Jan; 25(1):17-26. PubMed ID: 2054826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic aspects of cardiac and skeletal muscle tissues in the condition of hypoxia, ischaemia and reperfusion induced by extracorporeal circulation.
    Corbucci GG; Menichetti A; Cogliati A; Ruvolo C
    Int J Tissue React; 1995; 17(5-6):219-25. PubMed ID: 8835633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate transport in heart in relation to myocardial ischemia.
    Halestrap AP; Wang X; Poole RC; Jackson VN; Price NT
    Am J Cardiol; 1997 Aug; 80(3A):17A-25A. PubMed ID: 9293952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate transport by cardiac sarcolemmal vesicles.
    Trosper TL; Philipson KD
    Am J Physiol; 1987 May; 252(5 Pt 1):C483-9. PubMed ID: 3578501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris.
    Otto R; Lageveen RG; Veldkamp H; Konings WN
    J Bacteriol; 1982 Feb; 149(2):733-8. PubMed ID: 7056700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle.
    Weiss JN; Venkatesh N; Lamp ST
    J Physiol; 1992 Feb; 447():649-73. PubMed ID: 1593462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial potassium loss and cell depolarisation in ischaemia and hypoxia.
    Wilde AA; Aksnes G
    Cardiovasc Res; 1995 Jan; 29(1):1-15. PubMed ID: 7895226
    [No Abstract]   [Full Text] [Related]  

  • 19. Na+/H+ exchange inhibitors reverse lactate-induced depression in postischaemic ventricular recovery.
    Karmazyn M
    Br J Pharmacol; 1993 Jan; 108(1):50-6. PubMed ID: 8381322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling transport of interstitial potassium in regional myocardial ischemia: effect on the injury current.
    Potse M; Coronel R; LeBlanc AR; Vinet A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6331-4. PubMed ID: 18003469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.