These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7954613)

  • 1. Potassium loss during myocardial ischaemia and hypoxia: does lactate efflux play a role?
    Weiss JN; Shieh RC
    Cardiovasc Res; 1994 Aug; 28(8):1125-32. PubMed ID: 7954613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate transport in mammalian ventricle. General properties and relation to K+ fluxes.
    Shieh RC; Goldhaber JI; Stuart JS; Weiss JN
    Circ Res; 1994 May; 74(5):829-38. PubMed ID: 8156630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition.
    Weiss JN; Lamp ST; Shine KI
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1165-75. PubMed ID: 2468298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium efflux from the myocardium during hypoxia: role of lactate ions.
    Crake T; Kirby MS; Poole-Wilson PA
    Cardiovasc Res; 1987 Dec; 21(12):886-91. PubMed ID: 3455355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of effects of aprikalim and of hypoxic and ischaemic preconditioning on extracellular potassium accumulation, metabolism, and functional recovery of the globally ischaemic rat heart.
    Guo AC; Diacono J; Feuvray D
    Cardiovasc Res; 1994 Jun; 28(6):864-71. PubMed ID: 7923293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is lactate-induced myocardial ischaemic injury mediated by decreased pH or increased intracellular lactate?
    Cross HR; Clarke K; Opie LH; Radda GK
    J Mol Cell Cardiol; 1995 Jul; 27(7):1369-81. PubMed ID: 7473783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic changes and transsarcolemmal ion transport during total ischaemia of isolated rat ventricular myocytes.
    Fiolet JW; Schumacher CA; Baartscheer A; Coronel R
    Basic Res Cardiol; 1993; 88(5):396-410. PubMed ID: 8117246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of hypoxic K loss in rabbit ventricle.
    Shivkumar K; Deutsch NA; Lamp ST; Khuu K; Goldhaber JI; Weiss JN
    J Clin Invest; 1997 Oct; 100(7):1782-8. PubMed ID: 9312178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium loss from rabbit myocardium during hypoxia: evidence for passive efflux linked to anion extrusion.
    Gaspardone A; Shine KI; Seabrooke SR; Poole-Wilson PA
    J Mol Cell Cardiol; 1986 Apr; 18(4):389-99. PubMed ID: 3712449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute ischaemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischaemia.
    Tajima M; Katayose D; Bessho M; Isoyama S
    Cardiovasc Res; 1994 Mar; 28(3):312-9. PubMed ID: 8174150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of myocardial lactate efflux after a step in heart rate in isolated rabbit hearts.
    Hak JB; van Beek JH; van Wijhe MH; Westerhof N
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H2081-5. PubMed ID: 8285247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the inward rectifier IK1 in the myocardial response to hypoxia.
    Ruiz-Petrich E; de Lorenzi F; Chartier D
    Cardiovasc Res; 1991 Jan; 25(1):17-26. PubMed ID: 2054826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic aspects of cardiac and skeletal muscle tissues in the condition of hypoxia, ischaemia and reperfusion induced by extracorporeal circulation.
    Corbucci GG; Menichetti A; Cogliati A; Ruvolo C
    Int J Tissue React; 1995; 17(5-6):219-25. PubMed ID: 8835633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate transport in heart in relation to myocardial ischemia.
    Halestrap AP; Wang X; Poole RC; Jackson VN; Price NT
    Am J Cardiol; 1997 Aug; 80(3A):17A-25A. PubMed ID: 9293952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate transport by cardiac sarcolemmal vesicles.
    Trosper TL; Philipson KD
    Am J Physiol; 1987 May; 252(5 Pt 1):C483-9. PubMed ID: 3578501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris.
    Otto R; Lageveen RG; Veldkamp H; Konings WN
    J Bacteriol; 1982 Feb; 149(2):733-8. PubMed ID: 7056700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle.
    Weiss JN; Venkatesh N; Lamp ST
    J Physiol; 1992 Feb; 447():649-73. PubMed ID: 1593462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial potassium loss and cell depolarisation in ischaemia and hypoxia.
    Wilde AA; Aksnes G
    Cardiovasc Res; 1995 Jan; 29(1):1-15. PubMed ID: 7895226
    [No Abstract]   [Full Text] [Related]  

  • 19. Na+/H+ exchange inhibitors reverse lactate-induced depression in postischaemic ventricular recovery.
    Karmazyn M
    Br J Pharmacol; 1993 Jan; 108(1):50-6. PubMed ID: 8381322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling transport of interstitial potassium in regional myocardial ischemia: effect on the injury current.
    Potse M; Coronel R; LeBlanc AR; Vinet A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6331-4. PubMed ID: 18003469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.