These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7954905)

  • 41. Impaired release of corticosterone from adrenals contributes to impairment of circadian rhythms of activity in hyperammonemic rats.
    Llansola M; Ahabrach H; Errami M; Cabrera-Pastor A; Addaoudi K; Felipo V
    Arch Biochem Biophys; 2013 Aug; 536(2):164-70. PubMed ID: 23376587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential Sensitivity to Ethanol-Induced Circadian Rhythm Disruption in Adolescent and Adult Mice.
    Ruby CL; Palmer KN; Zhang J; Risinger MO; Butkowski MA; Swartzwelder HS
    Alcohol Clin Exp Res; 2017 Jan; 41(1):187-196. PubMed ID: 27997028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasma corticosterone, motor activity and metabolic circadian patterns in streptozotocin-induced diabetic rats.
    Velasco A; Huerta I; Marin B
    Chronobiol Int; 1988; 5(2):127-35. PubMed ID: 3401978
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Circadian rhythm of dry mass and weight-class-pattern of the rat hepatocytes--effects of light-dark and feeding regimens.
    Tongiani R; Chieli E; Malvaldi G
    Acta Histochem; 1982; 70(1):78-88. PubMed ID: 6808588
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts.
    Schöttner K; Limbach A; Weinert D
    Chronobiol Int; 2011 Feb; 28(1):58-69. PubMed ID: 21182405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ontogeny of the circadian rhythm of plasma corticosterone in blind infantile rats.
    Hiroshige T; Honma K; Watanabe K
    J Physiol; 1982 Apr; 325():493-506. PubMed ID: 7108784
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker.
    Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA
    J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.
    Fahrenkrug J; Georg B; Hannibal J; Jørgensen HL
    Exp Eye Res; 2018 Apr; 169():134-140. PubMed ID: 29428294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Circadian rhythms in mice fed a single daily meal at different stages of lighting regimen.
    Nelson W; Scheving L; Halberg F
    J Nutr; 1975 Feb; 105(2):171-84. PubMed ID: 1113197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle.
    Wexler DB; Moore-Ede MC
    Aviat Space Environ Med; 1986 Dec; 57(12 Pt 1):1144-9. PubMed ID: 3800813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Daily rhythms in adrenal responsiveness to adrenocorticotropin are determined primarily by the time of feeding in the rat.
    Wilkinson CW; Shinsako J; Dallman MF
    Endocrinology; 1979 Feb; 104(2):350-9. PubMed ID: 221174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sleep deprivation decreases phase-shift responses of circadian rhythms to light in the mouse: role of serotonergic and metabolic signals.
    Challet E; Turek FW; Laute M; Van Reeth O
    Brain Res; 2001 Aug; 909(1-2):81-91. PubMed ID: 11478924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of the Zeitgeber pattern on the resynchronization behaviour of dark-active mammals.
    Erkert HG
    Int J Chronobiol; 1982; 8(2):115-25. PubMed ID: 7141748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of chronic mild stress on circadian rhythms in the locomotor activity in rats.
    Gorka Z; Moryl E; Papp M
    Pharmacol Biochem Behav; 1996 May; 54(1):229-34. PubMed ID: 8728562
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Socially adjusted synchrony in the activity profiles of common marmosets in light-dark conditions.
    Melo P; Gonçalves B; Menezes A; Azevedo C
    Chronobiol Int; 2013 Jul; 30(6):818-27. PubMed ID: 23767997
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Restricted food access and light-dark: impact of conflicting zeitgebers on circadian rhythms of the rabbit.
    Jilge B; Stähle H
    Am J Physiol; 1993 Apr; 264(4 Pt 2):R708-15. PubMed ID: 8476114
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis.
    Fischman AJ; Kastin AJ; Graf MV; Moldow RL
    Neuroendocrinology; 1988 Apr; 47(4):309-16. PubMed ID: 2836747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resynchronization patterns for urinary rhythms in rats after light-dark shifts.
    Poulis J; Roelfsema F; van der Heide D; Smeenk D
    Am J Physiol; 1985 Oct; 249(4 Pt 2):R402-9. PubMed ID: 4051025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Restricted daytime feeding modifies suprachiasmatic nucleus vasopressin release in rats.
    Kalsbeek A; van Heerikhuize JJ; Wortel J; Buijs RM
    J Biol Rhythms; 1998 Feb; 13(1):18-29. PubMed ID: 9486840
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Twelve-hour phase shifts of hamster circadian rhythms elicited by voluntary wheel running.
    Gannon RL; Rea MA
    J Biol Rhythms; 1995 Sep; 10(3):196-210. PubMed ID: 7488758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.