These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 7954916)
1. Release profiles of phenytoin from new oral dosage form for the elderly. Watanabe A; Hanawa T; Sugihara M; Yamamoto K Chem Pharm Bull (Tokyo); 1994 Aug; 42(8):1642-5. PubMed ID: 7954916 [TBL] [Abstract][Full Text] [Related]
2. Influence of pH on release of phenytoin sodium from slow-release dosage forms. Serajuddin AT; Jarowski CI J Pharm Sci; 1993 Mar; 82(3):306-10. PubMed ID: 8450427 [TBL] [Abstract][Full Text] [Related]
3. Dissolution behavior and bioavailability of phenytoin from a ground mixture with microcrystalline cellulose. Yamamoto K; Nakano M; Arita T; Takayama Y; Nakai Y J Pharm Sci; 1976 Oct; 65(10):1484-8. PubMed ID: 978407 [TBL] [Abstract][Full Text] [Related]
4. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Atef E; Belmonte AA Eur J Pharm Sci; 2008 Nov; 35(4):257-63. PubMed ID: 18706499 [TBL] [Abstract][Full Text] [Related]
5. Recovery of phenytoin from solutions of caseinate salts and calcium chloride. Smith OB; Longe RL; Altman RE; Price JC Am J Hosp Pharm; 1988 Feb; 45(2):365-8. PubMed ID: 3129937 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided dosage form design. III. Feasibility assessment for an oral prolonged-release phenytoin product. Irvin JR; Notari RE Pharm Res; 1991 Feb; 8(2):232-7. PubMed ID: 2023873 [TBL] [Abstract][Full Text] [Related]
7. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability. Abo Enin HA; Abdel-Bar HM Expert Opin Drug Deliv; 2016 Nov; 13(11):1513-1521. PubMed ID: 27564321 [TBL] [Abstract][Full Text] [Related]
8. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations. Baumgartner R; Eitzlmayr A; Matsko N; Tetyczka C; Khinast J; Roblegg E Int J Pharm; 2014 Dec; 477(1-2):1-11. PubMed ID: 25304093 [TBL] [Abstract][Full Text] [Related]
9. Recovery of phenytoin from feeding formulas and protein mixtures. Hennessy DD Am J Health Syst Pharm; 2003 Sep; 60(18):1850-2. PubMed ID: 14521035 [TBL] [Abstract][Full Text] [Related]
10. Novel ultra-cryo milling and co-grinding technique in liquid nitrogen to produce dissolution-enhanced nanoparticles for poorly water-soluble drugs. Sugimoto S; Niwa T; Nakanishi Y; Danjo K Chem Pharm Bull (Tokyo); 2012; 60(3):325-33. PubMed ID: 22382412 [TBL] [Abstract][Full Text] [Related]
11. Melts of Octaacetyl Sucrose as Oral-Modified Release Dosage Forms for Delivery of Poorly Soluble Compound in Stable Amorphous Form. Haznar-Garbacz D; Kaminska E; Zakowiecki D; Lachmann M; Kaminski K; Garbacz G; Dorożyński P; Kulinowski P AAPS PharmSciTech; 2018 Feb; 19(2):951-960. PubMed ID: 29098644 [TBL] [Abstract][Full Text] [Related]
12. Multiscale Computational Modeling of the Nanostructure of Solid Dispersions of Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin. Huang W; Mandal T; Larson RG Mol Pharm; 2017 Oct; 14(10):3422-3435. PubMed ID: 28829134 [TBL] [Abstract][Full Text] [Related]
13. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications. Wang T; Xue J; Hu Q; Zhou M; Luo Y J Colloid Interface Sci; 2017 Dec; 507():119-130. PubMed ID: 28780331 [TBL] [Abstract][Full Text] [Related]
14. Effect of processing parameters and controlled environment storage on the disproportionation and dissolution of extended-release capsule of phenytoin sodium. Rahman Z; Dharani S; Barakh Ali SF; Afrooz H; Reddy IK; Khan MA Int J Pharm; 2018 Oct; 550(1-2):290-299. PubMed ID: 30031866 [TBL] [Abstract][Full Text] [Related]
17. Aqueous solubility and dissolution rate does not adequately predict in vivo performance: a probe utilizing some N-acyloxymethyl phenytoin prodrugs. Stella VJ; Martodihardjo S; Rao VM J Pharm Sci; 1999 Aug; 88(8):775-9. PubMed ID: 10430541 [TBL] [Abstract][Full Text] [Related]
18. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants. Yassin S; Goodwin DJ; Anderson A; Sibik J; Ian Wilson D; Gladden LF; Axel Zeitler J J Pharm Sci; 2015 Oct; 104(10):3440-3450. PubMed ID: 28739040 [TBL] [Abstract][Full Text] [Related]
19. Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(N-isopropylacrylamide-co-vinylpyrrolidone) Excipients. Widanapathirana L; Tale S; Reineke TM Mol Pharm; 2015 Jul; 12(7):2537-43. PubMed ID: 26046484 [TBL] [Abstract][Full Text] [Related]
20. Influence of water/alkoxide ratio in the synthesis of nanosized sol-gel titania on the release of phenytoin. López T; Espinoza KA; Kozina A; Castillo P; Silvestre-Albero A; Rodriguez-Reinoso F; Alexander-Katz R Langmuir; 2011 Apr; 27(7):4004-9. PubMed ID: 21366276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]