These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7955218)

  • 1. Ischemia, hyperemia, exercise, and nitric oxide. Complex physiology and complex molecular adaptations.
    Loscalzo J; Vita JA
    Circulation; 1994 Nov; 90(5):2556-9. PubMed ID: 7955218
    [No Abstract]   [Full Text] [Related]  

  • 2. Nitric oxide and reactive hyperemia: role of location and duration of ischemia.
    Raff U; Ott C; John S; Schmidt BM; Fleischmann EH; Schmieder RE
    Am J Hypertens; 2010 Aug; 23(8):865-9. PubMed ID: 20395940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of K+ATP channels and EDRF in reactive hyperemia in the hindquarters vascular bed of cats.
    Minkes RK; Santiago JA; McMahon TJ; Kadowitz PJ
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1704-12. PubMed ID: 7503268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The role of nitric oxide in the development of reactive hyperemia in the coronary bed].
    Sagach VF; Tkachenko MN
    Fiziol Zh Im I M Sechenova; 1994 Feb; 80(2):98-104. PubMed ID: 7522793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of nitric oxide and prostaglandins to reactive hyperemia in human forearm.
    Engelke KA; Halliwill JR; Proctor DN; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 1996 Oct; 81(4):1807-14. PubMed ID: 8904603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of nitric oxide to exercise hyperemia in the human forearm.
    Gordon MB; Jain R; Beckman JA; Creager MA
    Vasc Med; 2002 Aug; 7(3):163-8. PubMed ID: 12553738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia.
    Martin EA; Nicholson WT; Eisenach JH; Charkoudian N; Joyner MJ
    J Appl Physiol (1985); 2006 Aug; 101(2):492-9. PubMed ID: 16614358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide.
    Meredith IT; Currie KE; Anderson TJ; Roddy MA; Ganz P; Creager MA
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1435-40. PubMed ID: 8967386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise-induced hyperemia unmasks regional blood flow deficit in experimental hindlimb ischemia.
    Brevetti LS; Paek R; Brady SE; Hoffman JI; Sarkar R; Messina LM
    J Surg Res; 2001 Jun; 98(1):21-6. PubMed ID: 11368533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitric oxide synthase inhibition on blood flow after retinal ischemia in cats.
    Ostwald P; Goldstein IM; Pachnanda A; Roth S
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2396-403. PubMed ID: 7591629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ghrelin-induced gastroprotection against ischemia-reperfusion injury involves an activation of sensory afferent nerves and hyperemia mediated by nitric oxide.
    Konturek PC; Brzozowski T; Walter B; Burnat G; Hess T; Hahn EG; Konturek SJ
    Eur J Pharmacol; 2006 Apr; 536(1-2):171-81. PubMed ID: 16581065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endothelium-derived relaxing factor in hindlimb reactive and active hyperemia in conscious dogs.
    O'Leary DS; Dunlap RC; Glover KW
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1213-9. PubMed ID: 8184964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise.
    Schrage WG; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 2006 May; 100(5):1506-12. PubMed ID: 16469932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in post-ischemic gingival hyperemia in anesthetized dogs.
    Omori Y; Takahashi SS; Todoki K
    Redox Rep; 2002; 7(5):300-3. PubMed ID: 12688514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of enteral nutrition-induced splanchnic hyperemia in ameliorating splanchnic ischemia.
    Eleftheriadis E
    Nutrition; 1999 Mar; 15(3):247-8. PubMed ID: 10198925
    [No Abstract]   [Full Text] [Related]  

  • 16. Nitric oxide and muscle blood flow in exercise.
    Tschakovsky ME; Joyner MJ
    Appl Physiol Nutr Metab; 2008 Feb; 33(1):151-61. PubMed ID: 18347667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of nitric oxide in reactive hyperemia in human forearm vessels.
    Tagawa T; Imaizumi T; Endo T; Shiramoto M; Harasawa Y; Takeshita A
    Circulation; 1994 Nov; 90(5):2285-90. PubMed ID: 7955185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for nitric oxide-mediated sympathetic forearm vasodiolatation in humans.
    Dietz NM; Engelke KA; Samuel TT; Fix RT; Joyner MJ
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):531-40. PubMed ID: 9032700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide synthase inhibition does not alter the reactive hyperemic response in the cutaneous circulation.
    Wong BJ; Wilkins BW; Holowatz LA; Minson CT
    J Appl Physiol (1985); 2003 Aug; 95(2):504-10. PubMed ID: 12692141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of prostaglandins and nitric oxide in gastrointestinal hyperemia of diabetic rats.
    Goldin E; Casadevall M; Mourelle M; Cirera I; Elizalde JI; Panés J; Casamitjana R; Guth P; Piqué JM; Terés J
    Am J Physiol; 1996 Apr; 270(4 Pt 1):G684-90. PubMed ID: 8928799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.