These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7955711)

  • 41. Cortical potentials associated with voluntary mandibular movements.
    Yoshida K; Kaji R; Hamano T; Kohara N; Kimura J; Shibasaki H; Iizuka T
    J Dent Res; 2000 Jul; 79(7):1514-8. PubMed ID: 11005737
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Readiness potential associated with an athetotic movement].
    Sonoo M; Ugawa Y; Sakuta M
    Rinsho Shinkeigaku; 1989 Mar; 29(3):343-8. PubMed ID: 2752663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Cortical motor potential associated with voluntary termination of a movement].
    Ivanova MP; Ulanov OI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1984; 34(3):437-43. PubMed ID: 6475293
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The bereitschaftspotential preceding stepping in patients with isolated gait ignition failure.
    Vidailhet M; Atchison PR; Stocchi F; Thompson PD; Rothwell JC; Marsden CD
    Mov Disord; 1995 Jan; 10(1):18-21. PubMed ID: 7885350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrophysiological correlates preceding and following the movement onset in man.
    Jergelová M
    Act Nerv Super (Praha); 1983 Dec; 25(4):280-4. PubMed ID: 6666515
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Symmetry of cortical planning for initiating stepping in sub-acute stroke.
    Peters S; Ivanova TD; Lakhani B; Boyd LA; Staines WR; Handy TC; Garland SJ
    Clin Neurophysiol; 2018 Apr; 129(4):787-796. PubMed ID: 29453170
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Electromyography of the leg. Study during various segmental movements].
    Duval A; Brault JF; Dufrenot A; Kamina P; Rideau Y
    Bull Assoc Anat (Nancy); 1980 Mar; 64(184):59-72. PubMed ID: 7459440
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Movement-related potentials preceding toe plantarflexion and dorsiflexion.
    Boschert J; Brickett P; Weinberg H; Deecke L
    Hum Neurobiol; 1983; 2(2):87-90. PubMed ID: 6629877
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electromyography Study of Forward-stepping Motion.
    Soda N; Ueki T
    J Phys Ther Sci; 2013 May; 25(5):615-7. PubMed ID: 24259814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of premovement components of movement-related cortical potentials in patients with Parkinson's disease or brain tumors.
    Oki H; Matsumoto K; Okada J; Shichijo F
    Stereotact Funct Neurosurg; 1990; 54-55():193-206. PubMed ID: 2080336
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How do different movement references influence ERP related to gait initiation? A comparative methods' assessment.
    Russo Y; Berchicci M; Di Russo F; Vannozzi G
    J Neurosci Methods; 2019 Jan; 311():95-101. PubMed ID: 30326203
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Steady-state movement-related cortical potentials: a new approach to assessing cortical activity associated with fast repetitive finger movements.
    Gerloff C; Toro C; Uenishi N; Cohen LG; Leocani L; Hallett M
    Electroencephalogr Clin Neurophysiol; 1997 Feb; 102(2):106-13. PubMed ID: 9060861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporal relationships of EMG changes preceding voluntary movement to premovement cortical potential shifts.
    Tanii K; Sadoyama T; Sameshima M
    Electroencephalogr Clin Neurophysiol; 1987 Nov; 67(5):412-20. PubMed ID: 2444409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simplified recording technique for the identification of inspiratory premotor potentials in humans.
    Raux M; Tremoureux L; Couturier A; Hug F; Similowski T
    Respir Physiol Neurobiol; 2010 Apr; 171(1):67-70. PubMed ID: 20079465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of the cervical and lumbar proprioceptors during stepping. An electromyographic study of the muscular activities of the lower limbs.
    Fukushima H; Hinoki M
    Acta Otolaryngol Suppl; 1984; 419():91-105. PubMed ID: 6242260
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temporal and spatial patterns of cortical activation during assisted lower limb movement.
    Wieser M; Haefeli J; Bütler L; Jäncke L; Riener R; Koeneke S
    Exp Brain Res; 2010 May; 203(1):181-91. PubMed ID: 20364340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Invasive recording of movement-related cortical potentials in humans.
    Ikeda A; Shibasaki H
    J Clin Neurophysiol; 1992 Oct; 9(4):509-20. PubMed ID: 1464677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cortical mechanism underlying externally cued gait initiation studied by contingent negative variation.
    Yazawa S; Shibasaki H; Ikeda A; Terada K; Nagamine T; Honda M
    Electroencephalogr Clin Neurophysiol; 1997 Oct; 105(5):390-9. PubMed ID: 9363005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal and spatial organization of gait-related electrocortical potentials.
    Knaepen K; Mierau A; Tellez HF; Lefeber D; Meeusen R
    Neurosci Lett; 2015 Jul; 599():75-80. PubMed ID: 26003448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Age-related changes in movement-related cortical potentials].
    Ishizuka H; Tomi H; Sunohara N
    Nihon Ronen Igakkai Zasshi; 1996 Aug; 33(8):586-91. PubMed ID: 8921696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.