These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7955711)

  • 61. Can water-based EEG caps record robust movement-related cortical potentials (MRCPs) for single and multiple joint movements?
    Ghani U; Jochumsen M; Gyldenvang MB; Niazi IK
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083438
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cortical potential shifts preceding voluntary movement are normal in parkinsonism.
    Barrett G; Shibasaki H; Neshige R
    Electroencephalogr Clin Neurophysiol; 1986 Apr; 63(4):340-8. PubMed ID: 2419091
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Determination of critical time points in non-collision incidents of elderly passengers in standing position on urban bus.
    Arabian A; Masjoodi S; Makkiabadi B; Ghafari E; Torabi Nassaj E; Zakerian SA
    Traffic Inj Prev; 2020; 21(2):151-155. PubMed ID: 32119568
    [No Abstract]   [Full Text] [Related]  

  • 64. Two types of movement-related cortical potentials preceding wrist extension in humans.
    Kita Y; Mori A; Nara M
    Neuroreport; 2001 Jul; 12(10):2221-5. PubMed ID: 11447338
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations.
    Enders H; Nigg BM
    Eur J Sport Sci; 2016; 16(4):416-26. PubMed ID: 26238032
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The possibility of determination of accuracy of performance just before the onset of a reaching task using movement-related cortical potentials.
    Suzuki S; Matsui T; Sakaguchi Y; Ando K; Nishiuchi N; Ishihara M
    Med Biol Eng Comput; 2010 Sep; 48(9):845-52. PubMed ID: 20652428
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stepping forward, stepping backward: a movement-related cortical potential study unveils distinctive brain activities.
    Berchicci M; Russo Y; Bianco V; Quinzi F; Rum L; Macaluso A; Committeri G; Vannozzi G; Di Russo F
    Behav Brain Res; 2020 Jun; 388():112663. PubMed ID: 32360166
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Slow negative cortical potential preceding the onset of postural adjustment.
    Saitou K; Washimi Y; Koike Y; Takahashi A; Kaneoke Y
    Electroencephalogr Clin Neurophysiol; 1996 Jun; 98(6):449-55. PubMed ID: 8763504
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Movement-related cortical potentials: their relationship to the laterality, complexity and learning of a movement.
    Demiralp T; Karamürsel S; Karakullukçu YE; Gökhan N
    Int J Neurosci; 1990 Mar; 51(1-2):153-62. PubMed ID: 2265904
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cortical potentials in man preceding a plantar flexion and dorsiflexion of the foot.
    Brunia CH; Dautzenberg JE
    Electroencephalogr Clin Neurophysiol Suppl; 1986; 38():238-41. PubMed ID: 3466776
    [No Abstract]   [Full Text] [Related]  

  • 71. A computer-assisted method for averaging movement-related cortical potentials with respect to EMG onset.
    Barrett G; Shibasaki H; Neshige R
    Electroencephalogr Clin Neurophysiol; 1985 Mar; 60(3):276-81. PubMed ID: 2578938
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of a wireless surface electromyography in dystonic gait in functional movement disorders: A case report.
    Oh MK; Kim HS; Jang YJ; Lee CH
    World J Clin Cases; 2020 Jan; 8(2):313-317. PubMed ID: 32047779
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Energy analysis reveals the negative effect of delays in passive movement mirror therapy.
    Orand A; Miyasaka H; Tomita Y; Tanino G; Sonoda S
    Somatosens Mot Res; 2014 Jun; 31(2):72-7. PubMed ID: 24400771
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synchronization of movement-related cerebral potentials for averaging.
    Popivanov D; Gantchev GN; Ivanova T
    Acta Physiol Pharmacol Bulg; 1983; 9(2):70-3. PubMed ID: 6659983
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fasciculation potentials in foot and leg muscles of healthy young adults.
    Van der Heijden A; Spaans F; Reulen J
    Electroencephalogr Clin Neurophysiol; 1994 Jun; 93(3):163-8. PubMed ID: 7515791
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Compensatory reactions to gait perturbations in man: short- and long-term effects of neuronal adaptation.
    Quintern J; Berger W; Dietz V
    Neurosci Lett; 1985 Dec; 62(3):371-6. PubMed ID: 4094724
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Single-trial classification of gait and point movement preparation from human EEG.
    Velu PD; de Sa VR
    Front Neurosci; 2013; 7():84. PubMed ID: 23781166
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [2-component cortical potential reflecting cessation of movement].
    Ivanova MP; Ulanov OI
    Fiziol Cheloveka; 1986; 12(2):236-43. PubMed ID: 3699363
    [No Abstract]   [Full Text] [Related]  

  • 79. [Method of registering fast and slow precise movements synchronously on an electroencephalogram and an electromyogram].
    Kosilov SA; Vasiutina AI; Ziablov VA; Rigina AA
    Fiziol Zh SSSR Im I M Sechenova; 1969 Dec; 55(12):1504-8. PubMed ID: 5375820
    [No Abstract]   [Full Text] [Related]  

  • 80. [On a supraspinal inhibitory mechanism. Electromyographic study on the tibialis-gastrocnemius system in humans].
    HUFSCHMIDT HJ
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1962; 275():463-71. PubMed ID: 13955510
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.