These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7956065)

  • 1. Target site selection in transposition of phage Mu.
    Mizuuchi M; Mizuuchi K
    Cold Spring Harb Symp Quant Biol; 1993; 58():515-23. PubMed ID: 7956065
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of bacteriophage mu transposition.
    Mizuuchi K; Craigie R
    Annu Rev Genet; 1986; 20():385-429. PubMed ID: 3028246
    [No Abstract]   [Full Text] [Related]  

  • 3. The conserved CA/TG motif at Mu termini: T specifies stable transpososome assembly.
    Lee I; Harshey RM
    J Mol Biol; 2003 Jul; 330(2):261-75. PubMed ID: 12823966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mu and IS1 transpositions exhibit strong orientation bias at the Escherichia coli bgl locus.
    Manna D; Wang X; Higgins NP
    J Bacteriol; 2001 Jun; 183(11):3328-35. PubMed ID: 11344140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration.
    Ge J; Harshey RM
    J Mol Biol; 2008 Jul; 380(4):598-607. PubMed ID: 18556020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The integration host factor-DNA complex upstream of the early promoter of bacteriophage Mu is functionally symmetric.
    van Ulsen P; Hillebrand M; Zulianello L; van de Putte P; Goosen N
    J Bacteriol; 1997 May; 179(9):3073-5. PubMed ID: 9139933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements.
    Ge J; Lou Z; Cui H; Shang L; Harshey RM
    J Biosci; 2011 Sep; 36(4):587-601. PubMed ID: 21857106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of the Bacteriophage Mu In Vitro Transposition Reaction and Genome Manipulation via Electroporation of DNA Transposition Complexes.
    Haapa-Paananen S; Savilahti H
    Methods Mol Biol; 2018; 1681():279-286. PubMed ID: 29134602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mu transpososome and RecBCD nuclease collaborate in the repair of simple Mu insertions.
    Choi W; Jang S; Harshey RM
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14112-7. PubMed ID: 25197059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriophage Mu targets the trinucleotide sequence CGG.
    Manna D; Deng S; Breier AM; Higgins NP
    J Bacteriol; 2005 May; 187(10):3586-8. PubMed ID: 15866949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites.
    Williams TL; Jackson EL; Carritte A; Baker TA
    Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two pathways in bacteriophage Mu transposition?
    Kamp D; Kahmann R
    Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 1():329-36. PubMed ID: 6271480
    [No Abstract]   [Full Text] [Related]  

  • 13. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils.
    Pathania S; Jayaram M; Harshey RM
    Cell; 2002 May; 109(4):425-36. PubMed ID: 12086600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cis-acting DNA sequences required in vivo for bacteriophage Mu helper-mediated transposition and packaging.
    Harel J; Duplessis L; Kahn JS; DuBow MS
    Arch Microbiol; 1990; 154(1):67-72. PubMed ID: 2168695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA binding specificity of the Mu Ner protein.
    Strzelecka TE; Hayes JJ; Clore GM; Gronenborn AM
    Biochemistry; 1995 Mar; 34(9):2946-55. PubMed ID: 7893708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic aspects of DNA transposition.
    Haniford DB; Chaconas G
    Curr Opin Genet Dev; 1992 Oct; 2(5):698-704. PubMed ID: 1333854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MuB protein allosterically activates strand transfer by the transposase of phage Mu.
    Baker TA; Mizuuchi M; Mizuuchi K
    Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer.
    Naigamwalla DZ; Chaconas G
    EMBO J; 1997 Sep; 16(17):5227-34. PubMed ID: 9311983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mu DNA reintegration upon excision: evidence for a possible involvement of nucleoid folding.
    Paolozzi L; Fabozzi G; Ghelardini P
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():591-598. PubMed ID: 10746762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of bacteriophage Mu repressor-operator complexes by the Escherichia coli integration host factor protein.
    Gama MJ; Toussaint A; Higgins NP
    Mol Microbiol; 1992 Jun; 6(12):1715-22. PubMed ID: 1386646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.