These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A comparative calorimetric study on tRNA unfolding. Schott FJ; Grubert M; Wangler W; Ackermann T Biophys Chem; 1981 Sep; 14(1):25-30. PubMed ID: 7032616 [TBL] [Abstract][Full Text] [Related]
4. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine. von der Haar F; Cramer F Biochemistry; 1976 Sep; 15(18):4131-8. PubMed ID: 786367 [TBL] [Abstract][Full Text] [Related]
5. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids. Freist W; Cramer F Eur J Biochem; 1983 Mar; 131(1):65-80. PubMed ID: 6339236 [TBL] [Abstract][Full Text] [Related]
6. Isoleucyl-tRNA synthetase from bakers' yeast: variable discrimination between tRNAIle and tRNAVal and different pathways of cognate and noncognate aminoacylation under standard conditions, in the presence of pyrophosphatase, elongation factor Tu-GTP complex, and spermine. Freist W; Sternbach H Biochemistry; 1984 Nov; 23(24):5742-52. PubMed ID: 6151853 [TBL] [Abstract][Full Text] [Related]
7. Isoleucyl-tRNA synthetase from bakers' yeast: multistep proofreading in discrimination between isoleucine and valine with modulated accuracy, a scheme for molecular recognition by energy dissipation. Freist W; Pardowitz I; Cramer F Biochemistry; 1985 Nov; 24(24):7014-23. PubMed ID: 3907707 [TBL] [Abstract][Full Text] [Related]
8. Thermal stability of membrane-reconstituted yeast cytochrome c oxidase. Morin PE; Diggs D; Freire E Biochemistry; 1990 Jan; 29(3):781-8. PubMed ID: 2159790 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast. Krauss G; Riesner D; Maass G Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288 [TBL] [Abstract][Full Text] [Related]
10. Enthalpic and entropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium. Bertazzon A; Tian GH; Lamblin A; Tsong TY Biochemistry; 1990 Jan; 29(1):291-8. PubMed ID: 2108718 [TBL] [Abstract][Full Text] [Related]
11. Differential scanning calorimetric study of the thermal unfolding transitions of yeast iso-1 and iso-2 cytochromes c and three composite isozymes. Liggins JR; Sherman F; Mathews AJ; Nall BT Biochemistry; 1994 Aug; 33(31):9209-19. PubMed ID: 8049222 [TBL] [Abstract][Full Text] [Related]
12. Proton exchange and basepair kinetics of yeast tRNA(Phe) and tRNA(Asp1). Choi BS; Redfield AG J Biochem; 1995 Mar; 117(3):515-20. PubMed ID: 7629016 [TBL] [Abstract][Full Text] [Related]
13. Stability of yeast iso-1-ferricytochrome c as a function of pH and temperature. Cohen DS; Pielak GJ Protein Sci; 1994 Aug; 3(8):1253-60. PubMed ID: 7987220 [TBL] [Abstract][Full Text] [Related]
14. Linked thermal and solute perturbation analysis of cooperative domain interactions in proteins. Structural stability of diphtheria toxin. Ramsay G; Freire E Biochemistry; 1990 Sep; 29(37):8677-83. PubMed ID: 2271548 [TBL] [Abstract][Full Text] [Related]
15. The significance of denaturant titrations of protein stability: a comparison of rat and baker's yeast cytochrome c and their site-directed asparagine-52-to-isoleucine mutants. Koshy TI; Luntz TL; Plotkin B; Schejter A; Margoliash E Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):347-50. PubMed ID: 8172593 [TBL] [Abstract][Full Text] [Related]
16. On the conformation of serine-specific transfer RNA. Studies by small-angle X-ray scattering and ultraviolet absorption of the molecule in solution. Pilz I; Malnig F; Kratky O; Von der Haar F Eur J Biochem; 1977 May; 75(1):35-41. PubMed ID: 324764 [TBL] [Abstract][Full Text] [Related]
17. A calorimetric investigation of melting of tRNAAsp from brewer's yeast. Filimonov VV; Privalov PL; Glangloff J; Dirheimer G Biochim Biophys Acta; 1978 Nov; 521(1):209-16. PubMed ID: 363156 [TBL] [Abstract][Full Text] [Related]
18. Isolation and properties of the main isoleucine trnas from lupinus luteus seeds. Augustyniak H; Pawełkiewicz J Acta Biochim Pol; 1978; 25(1):81-9. PubMed ID: 665079 [TBL] [Abstract][Full Text] [Related]
19. A novel conformational change of the anticodon region of tRNAPhe (yeast). Urbanke C; Maass G Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565 [TBL] [Abstract][Full Text] [Related]
20. Unfolding of yeast transfer ribonucleic acid species caused by addition of organic solvents and studied by circular dichroism. Prinz H; Maelicke A; Cramer F Biochemistry; 1974 Mar; 13(7):1322-6. PubMed ID: 4594759 [No Abstract] [Full Text] [Related] [Next] [New Search]