BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 795660)

  • 1. Free 3'-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli.
    Sprinzl M; Richter D
    Eur J Biochem; 1976 Dec; 71(1):171-6. PubMed ID: 795660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the aminoacyl end of transfer RNA in the allosteric control of guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of Escherichia coli.
    Chinali G; Liou R; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2761-8. PubMed ID: 356874
    [No Abstract]   [Full Text] [Related]  

  • 3. Ability of modified forms of phenylalanine tRNA to stimulate guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of E. coli.
    Ofengand J; Liou R
    Nucleic Acids Res; 1978 Apr; 5(4):1325-34. PubMed ID: 349503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal synthesis of guanosine tetra- and pentaphosphate with mRNAs of different chain length.
    Giesen M; Erdmann VA
    FEBS Lett; 1977 Nov; 83(1):125-7. PubMed ID: 336399
    [No Abstract]   [Full Text] [Related]  

  • 5. Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate.
    Chinali G; Horowitz J; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2755-60. PubMed ID: 356873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of elongation factor Tu from Escherichia coli with respect to attachment to the amino acid to the 2' or 3'-hydroxyl group of the terminal adenosine of tRNA.
    Sprinzl M; Kucharzewski M; Hobbs JB; Cramer F
    Eur J Biochem; 1977 Aug; 78(1):55-61. PubMed ID: 334535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes.
    Haseltine WA; Block R
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1564-8. PubMed ID: 4576025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of guanosine polyphosphates (pppGpp and ppGpp) and its regulation by aminoacyl-tRNA.
    Ogawa Y; Sy J
    J Biochem; 1977 Oct; 82(4):947-53. PubMed ID: 336616
    [No Abstract]   [Full Text] [Related]  

  • 9. Altered specificity of synthesis of guanosine tetraphosphate (ppGpp) and pentaphosphate (ppGpp) by salt-washed ribosomes.
    Ramagopal S
    Biochem Biophys Res Commun; 1974 May; 58(1):268-71. PubMed ID: 4598443
    [No Abstract]   [Full Text] [Related]  

  • 10. Template-independent synthesis of guanosine tetra- and pentaphosphates on ribosomes.
    Belitsina NV; Klyachko EV; Shakulov RS
    FEBS Lett; 1983 Oct; 162(1):39-42. PubMed ID: 6352335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of pppGpp by ribosomes from an Escherichia coli spoT mutant and the metabolic relationship between pppGpp and ppGpp.
    Leung KL; Yamazaki H
    Can J Biochem; 1977 Dec; 55(12):1207-12. PubMed ID: 340016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination between purine and pyrimidine base at the 3' terminus of the tRNA molecule by the stringent factor system from Escherichia coli.
    Richter D
    Biochem Biophys Res Commun; 1978 Mar; 81(2):359-65. PubMed ID: 352346
    [No Abstract]   [Full Text] [Related]  

  • 13. Specific recognition of GTpsiC loop (loop IV) of tRNA by 50S ribosomal subunits from E. coli.
    Richter D; Erdmann VA; Sprinzl M
    Nat New Biol; 1973 Dec; 246(153):132-5. PubMed ID: 4586557
    [No Abstract]   [Full Text] [Related]  

  • 14. Ribosomal proteins of Escherichia coli that stimulate stringent-factor-mediated pyrophosphoryl transfer in vitro.
    Christiansen L; Neirhaus KH
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1839-43. PubMed ID: 778846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) from Escherichia coli ribosomes.
    Cashel M
    Anal Biochem; 1974 Jan; 57(1):100-7. PubMed ID: 4593930
    [No Abstract]   [Full Text] [Related]  

  • 16. Specific recognition of the 3'-terminal adenosine of tRNAPhe in the exit site of Escherichia coli ribosomes.
    Lill R; Lepier A; Schwägele F; Sprinzl M; Vogt H; Wintermeyer W
    J Mol Biol; 1988 Oct; 203(3):699-705. PubMed ID: 2463367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stringent factor binds to Escherichia coli ribosomes only in the presence of protein L10.
    Howard GA; Gordon J
    FEBS Lett; 1976 Oct; 68(2):211-4. PubMed ID: 789113
    [No Abstract]   [Full Text] [Related]  

  • 18. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system.
    Baksht E; de Groot N; Sprinzl M; Cramer F
    Biochemistry; 1976 Aug; 15(16):3639-46. PubMed ID: 782520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new transfer RNA fragment reaction: Tp psi pCpGp bound to a ribosome-messenger RNA complex induces the synthesis of guanosine tetra- and pentaphosphates.
    Richter D; Erdmann VA; Sprinzl M
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3226-9. PubMed ID: 4606128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regions of tRNA important for binding to the ribosomal A and P sites.
    Sprinzl M; Wagner T; Lorenz S; Erdmann VA
    Biochemistry; 1976 Jul; 15(14):3031-9. PubMed ID: 782513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.