BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7956723)

  • 1. Gas-uptake pharmacokinetics of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123).
    Loizou GD; Urban G; Dekant W; Anders MW
    Drug Metab Dispos; 1994; 22(4):511-7. PubMed ID: 7956723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-uptake pharmacokinetics and biotransformation of 1,1-dichloro-1-fluoroethane (HCFC-141b).
    Loizou GD; Anders MW
    Drug Metab Dispos; 1993; 21(4):634-9. PubMed ID: 8104122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-uptake pharmacokinetics and metabolism of 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124) in the rat, mouse, and hamster.
    Loizou GD; Anders MW
    Drug Metab Dispos; 1995 Aug; 23(8):875-80. PubMed ID: 7493556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cytochrome P450 2E1 in the species-dependent biotransformation of 1,2-dichloro-1,1,2-trifluoroethane in rats and mice.
    Dekant W; Assmann M; Urban G
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):200-7. PubMed ID: 8545828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of 1,2-dichloro-1-fluoroethane and 1-fluoro-1,2,2-trichloroethane: electronic factors govern the regioselectivity of cytochrome P450-dependent oxidation.
    Yin H; Anders MW; Jones JP
    Chem Res Toxicol; 1996; 9(1):50-7. PubMed ID: 8924616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose-dependent metabolism of 2,2-dichloro-1,1,1-trifluoroethane: a physiologically based pharmacokinetic model in the male Fischer 344 rat.
    Vinegar A; Williams RJ; Fisher JW; McDougal JN
    Toxicol Appl Pharmacol; 1994 Nov; 129(1):103-13. PubMed ID: 7974482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1.
    Urban G; Speerschneider P; Dekant W
    Chem Res Toxicol; 1994; 7(2):170-6. PubMed ID: 8199305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes.
    Ferrara R; Tolando R; King LJ; Manno M
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologically based pharmacokinetic analysis of the concentration-dependent metabolism of halothane.
    Loizou GD; Tran CL; Anders MW
    Xenobiotica; 1997 Jan; 27(1):87-99. PubMed ID: 9041681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of 1,1-dichloro-2,2,2-trifluoroethane in rats.
    Urban G; Dekant W
    Xenobiotica; 1994 Sep; 24(9):881-92. PubMed ID: 7810170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123)-induced liver toxicity by ethanol in guinea-pigs.
    Hoet P; Buchet JP; Sempoux C; Haufroid V; Rahier J; Lison D
    Arch Toxicol; 2002 Dec; 76(12):707-14. PubMed ID: 12451447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pentahaloethane-based chlorofluorocarbon substitutes and halothane: correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation.
    Harris JW; Jones JP; Martin JL; LaRosa AC; Olson MJ; Pohl LR; Anders MW
    Chem Res Toxicol; 1992; 5(5):720-5. PubMed ID: 1446014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism in vivo and in vitro of the refrigerant substitute 1,1,1,2-tetrafluoro-2-chloroethane.
    Olson MJ; Johnson JT; O'Gara JF; Surbrook SE
    Drug Metab Dispos; 1991; 19(5):1004-11. PubMed ID: 1686224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism for alkyl sulfide-modulated carbon tetrachloride-induced hepatotoxicity: the role of cytochrome P450 2E1, P450 2B and glutathione S-transferase expression.
    Kim SG; Chung HC; Cho JY
    J Pharmacol Exp Ther; 1996 May; 277(2):1058-66. PubMed ID: 8627517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat to human extrapolation of HCFC-123 kinetics deduced from halothane kinetics: a corollary approach to physiologically based pharmacokinetic modeling.
    Williams RJ; Vinegar A; McDougal JN; Jarabek AM; Fisher JW
    Fundam Appl Toxicol; 1996 Mar; 30(1):55-66. PubMed ID: 8812223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically based pharmacokinetic estimated metabolic constants and hepatotoxicity of carbon tetrachloride after methanol pretreatment in rats.
    Evans MV; Simmons JE
    Toxicol Appl Pharmacol; 1996 Oct; 140(2):245-53. PubMed ID: 8887440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of furan biotransformation by F-344 rats in vivo and in vitro.
    Kedderis GL; Carfagna MA; Held SD; Batra R; Murphy JE; Gargas ML
    Toxicol Appl Pharmacol; 1993 Dec; 123(2):274-82. PubMed ID: 8248934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cytochrome P450 2E1 modulators on the pharmacokinetics of chlorzoxazone and 6-hydroxychlorzoxazone in rats.
    Chen L; Yang CS
    Life Sci; 1996; 58(18):1575-85. PubMed ID: 8649187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of the chemoprotective agent diallyl sulfide to glutathione conjugates in rats.
    Jin L; Baillie TA
    Chem Res Toxicol; 1997 Mar; 10(3):318-27. PubMed ID: 9084912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetics and metabolism of vinyl fluoride in vivo and in vitro.
    Cantoreggi S; Keller DA
    Toxicol Appl Pharmacol; 1997 Mar; 143(1):130-9. PubMed ID: 9073601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.