These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7956723)

  • 41. Computer simulation of the lactational transfer of tetrachloroethylene in rats using a physiologically based model.
    Byczkowski JZ; Kinkead ER; Leahy HF; Randall GM; Fisher JW
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):228-36. PubMed ID: 8171430
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of cytochrome P450 2E1 induces an increase in extracellular dopamine in rat substantia nigra: a new metabolic pathway?
    Nissbrandt H; Bergquist F; Jonason J; Engberg G
    Synapse; 2001 Jun; 40(4):294-301. PubMed ID: 11309845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gas uptake studies of deuterium isotope effects on dichloromethane metabolism in female B6C3F1 mice in vivo.
    Andersen ME; Clewell HJ; Mahle DA; Gearhart JM
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):158-65. PubMed ID: 8079349
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conditions influencing the rat liver microsomal metabolism of 2,2,-dichloro-1,1,1-trifluoroethane (HCFC-123).
    Godin CS; Drerup JM; Vinegar A
    Drug Metab Dispos; 1993; 21(3):551-3. PubMed ID: 8100516
    [No Abstract]   [Full Text] [Related]  

  • 45. Identification of the enzyme responsible for oxidative halothane metabolism: implications for prevention of halothane hepatitis.
    Kharasch ED; Hankins D; Mautz D; Thummel KE
    Lancet; 1996 May; 347(9012):1367-71. PubMed ID: 8637342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kupffer cell stimulation with Corynebacterium parvum reduces some cytochrome P450-dependent activities and diminishes acetaminophen and carbon tetrachloride-induced liver injury in the rat.
    Raiford DS; Thigpen MC
    Toxicol Appl Pharmacol; 1994 Nov; 129(1):36-45. PubMed ID: 7974494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane.
    Huwyler J; Aeschlimann D; Christen U; Gut J
    Eur J Biochem; 1992 Jul; 207(1):229-38. PubMed ID: 1628651
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol.
    Fisher JW; Mahle D; Abbas R
    Toxicol Appl Pharmacol; 1998 Oct; 152(2):339-59. PubMed ID: 9853003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of a physiologically based model to predict systemic uptake and respiratory elimination of perchloroethylene.
    Dallas CE; Muralidhara S; Chen XM; Ramanathan R; Varkonyi P; Gallo JM; Bruckner JV
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):60-8. PubMed ID: 8079355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice.
    Beland FA
    Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reductive activation of HCFC-123 by methaemalbumin.
    Zanovello A; Ferrara R; Manno M
    Toxicol Lett; 2003 Sep; 144(1):127-36. PubMed ID: 12919730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolism of the hydrochlorofluorocarbon 1,2-dichloro-1,1-difluoroethane.
    Harris JW; Anders MW
    Chem Res Toxicol; 1991; 4(2):180-6. PubMed ID: 1782346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro biotransformation of 1,1-dichloroethylene by hepatic cytochrome P-450 2E1 in mice.
    Lee RP; Forkert PG
    J Pharmacol Exp Ther; 1994 Jul; 270(1):371-6. PubMed ID: 8035334
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolism of 1-fluoro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane.
    Yin H; Jones JP; Anders MW
    Chem Res Toxicol; 1995 Mar; 8(2):262-8. PubMed ID: 7766810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tissue acylation by the chlorofluorocarbon substitute 2,2-dichloro-1,1,1-trifluoroethane.
    Harris JW; Pohl LR; Martin JL; Anders MW
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1407-10. PubMed ID: 1996342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 1,1,1-Trifluoro-2,2-dichloroethane (HCFC-123) and 1,1,1-trifluoro-2-bromo-2-chloroethane (halothane) cause similar biochemical effects in rats exposed by inhalation for five days.
    Keller DA; Lieder PH; Brock WJ; Cook JC
    Drug Chem Toxicol; 1998 Nov; 21(4):405-15. PubMed ID: 9839153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Epidemic of liver disease caused by hydrochlorofluorocarbons used as ozone-sparing substitutes of chlorofluorocarbons.
    Hoet P; Graf ML; Bourdi M; Pohl LR; Duray PH; Chen W; Peter RM; Nelson SD; Verlinden N; Lison D
    Lancet; 1997 Aug; 350(9077):556-9. PubMed ID: 9284778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective inactivation of rat and bovine olfactory cytochrome P450 by three haloethanes.
    Marini S; Longo V; Zaccaro C; De Matteis F; Gervasi PG
    Toxicol Lett; 2001 Oct; 124(1-3):83-90. PubMed ID: 11684360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanistic insights aid the search for CFC substitutes: risk assessment of HCFC-123 as an example.
    Jarabek AM; Fisher JW; Rubenstein R; Lipscomb JC; Williams RJ; Vinegar A; McDougal JN
    Risk Anal; 1994 Jun; 14(3):231-50. PubMed ID: 8029495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acute and subchronic toxicity of 1,1-dichloro-1-fluoroethane (HCFC-141b).
    Brock WJ; Trochimowicz HJ; Millischer RJ; Farr C; Kawano T; Rusch GM
    Food Chem Toxicol; 1995 Jun; 33(6):483-90. PubMed ID: 7797175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.