These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7957143)

  • 1. Relationships between postcompetition blood lactate concentration and average running velocity over 100-m and 200-m races.
    Hautier CA; Wouassi D; Arsac LM; Bitanga E; Thiriet P; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1994; 68(6):508-13. PubMed ID: 7957143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races.
    Lacour JR; Bouvat E; Barthélémy JC
    Eur J Appl Physiol Occup Physiol; 1990; 61(3-4):172-6. PubMed ID: 2282899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age and sex differences in blood lactate response to sprint running in elite master athletes.
    Korhonen MT; Suominen H; Mero A
    Can J Appl Physiol; 2005 Dec; 30(6):647-65. PubMed ID: 16485517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy system contribution to 100-m and 200-m track running events.
    Duffield R; Dawson B; Goodman C
    J Sci Med Sport; 2004 Sep; 7(3):302-13. PubMed ID: 15518295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue and changes of ATP, creatine phosphate, and lactate during the 400-m sprint.
    Hirvonen J; Nummela A; Rusko H; Rehunen S; Härkönen M
    Can J Sport Sci; 1992 Jun; 17(2):141-4. PubMed ID: 1324108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood glucose responses in humans mirror lactate responses for individual anaerobic threshold and for lactate minimum in track tests.
    Simões HG; Grubert Campbell CS; Kokubun E; Denadai BS; Baldissera V
    Eur J Appl Physiol Occup Physiol; 1999 Jun; 80(1):34-40. PubMed ID: 10367721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for the evaluation of anaerobic running power in athletes.
    Rusko H; Nummela A; Mero A
    Eur J Appl Physiol Occup Physiol; 1993; 66(2):97-101. PubMed ID: 8472703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak blood lactate after 400 m sprinting in sprinters and long-distance runners.
    Ohkuwa T; Miyamura M
    Jpn J Physiol; 1984; 34(3):553-6. PubMed ID: 6492499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heart rate and blood lactate in 400 m flat and 400 m hurdle running: a comparative study.
    Gupta S; Goswami A; Mukhopadhyay S
    Indian J Physiol Pharmacol; 1999 Jul; 43(3):361-6. PubMed ID: 10776485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of running velocity at maximal oxygen uptake.
    Lacour JR; Padilla-Magunacelaya S; Chatard JC; Arsac L; Barthélémy JC
    Eur J Appl Physiol Occup Physiol; 1991; 62(2):77-82. PubMed ID: 2022207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of maximal anaerobic running tests on a treadmill and track.
    Nummela A; Hämäläinen I; Rusko H
    J Sports Sci; 2007 Jan; 25(1):87-96. PubMed ID: 17127584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise.
    Hirvonen J; Rehunen S; Rusko H; Härkönen M
    Eur J Appl Physiol Occup Physiol; 1987; 56(3):253-9. PubMed ID: 3569234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.
    Nummela A; Rusko H
    Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy system contributions in middle-distance running events.
    Hill DW
    J Sports Sci; 1999 Jun; 17(6):477-83. PubMed ID: 10404496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response.
    Hanon C; Thomas C
    J Sports Sci; 2011 Jun; 29(9):905-12. PubMed ID: 21547833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A field test for determining the speed obtained through anaerobic glycolysis in runners.
    Borsetto C; Ballarin E; Casoni I; Cellini M; Vitiello P; Conconi F
    Int J Sports Med; 1989 Oct; 10(5):339-45. PubMed ID: 2599721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in acid-base status of marathon runners during an incremental field test. Relationship to mean competitive marathon velocity.
    Zoladz JA; Sargeant AJ; Emmerich J; Stoklosa J; Zychowski A
    Eur J Appl Physiol Occup Physiol; 1993; 67(1):71-6. PubMed ID: 8375370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Blood Lactate Level Deteriorates Running Economy in World Class Endurance Athletes.
    Hoff J; Støren Ø; Finstad A; Wang E; Helgerud J
    J Strength Cond Res; 2016 May; 30(5):1373-8. PubMed ID: 26817745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood lactate and glycerol after 400-m and 3,000-m runs in sprint and long distance runners.
    Ohkuwa T; Kato Y; Katsumata K; Nakao T; Miyamura M
    Eur J Appl Physiol Occup Physiol; 1984; 53(3):213-8. PubMed ID: 6542855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations in heart rate at blood lactate threshold due to exercise mode in elite cross-country skiers.
    Larson AJ
    J Strength Cond Res; 2006 Nov; 20(4):855-60. PubMed ID: 17194228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.