These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 7957170)
1. The capacity of reducing-equivalent shuttles limits glycolysis during ethanol oxidation. Berry MN; Gregory RB; Grivell AR; Phillips JW; Schön A Eur J Biochem; 1994 Oct; 225(2):557-64. PubMed ID: 7957170 [TBL] [Abstract][Full Text] [Related]
2. The influence of thyroid state on hepatic glycolysis. Gregory RB; Berry MN Eur J Biochem; 1995 Apr; 229(2):344-8. PubMed ID: 7744057 [TBL] [Abstract][Full Text] [Related]
3. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells. Grivell AR; Korpelainen EI; Williams CJ; Berry MN Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209 [TBL] [Abstract][Full Text] [Related]
4. Abolition of the inhibitory effect of ethanol oxidation on gluconeogenesis from lactate by asparagine or low concentrations of ammonia. Efthivoulou MA; Phillips JW; Berry MN Biochim Biophys Acta; 1995 Jun; 1244(2-3):303-10. PubMed ID: 7599148 [TBL] [Abstract][Full Text] [Related]
5. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes. Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699 [TBL] [Abstract][Full Text] [Related]
7. Interaction of glycolysis and respiration in perfused rat liver. Changes in oxygen uptake following the addition of ethanol. Thurman RG; Scholz R Eur J Biochem; 1977 May; 75(1):13-21. PubMed ID: 862614 [TBL] [Abstract][Full Text] [Related]
8. Interactions between glycolysis and mixed function oxidation: studies with 7-ethoxycoumarin in perfused livers from beta-naphthoflavone-treated rats. Belinsky SA; Kauffman FC; Thurman RG Mol Pharmacol; 1989 Apr; 35(4):512-8. PubMed ID: 2704372 [TBL] [Abstract][Full Text] [Related]
9. The effects of ethanol concentration on glycero-3-phosphate accumulation in the perfused rat liver. A reassessment of ethanol-induced inhibition of glycolysis using 31P-NMR spectroscopy and HPLC. Masson S; Desmoulin F; Sciaky M; Cozzone PJ Eur J Biochem; 1992 Apr; 205(1):187-94. PubMed ID: 1555578 [TBL] [Abstract][Full Text] [Related]
10. Role of fructose 2,6-bisphosphate in the control of glycolysis. Stimulation of glycogen synthesis by lactate in the isolated working rat heart. Depré C; Veitch K; Hue L Acta Cardiol; 1993; 48(1):147-64. PubMed ID: 8447185 [TBL] [Abstract][Full Text] [Related]
11. Importance of the modulation of glycolysis in the control of lactate metabolism by fatty acids in isolated hepatocytes from fed rats. Morand C; Besson C; Demigne C; Remesy C Arch Biochem Biophys; 1994 Mar; 309(2):254-60. PubMed ID: 8135535 [TBL] [Abstract][Full Text] [Related]
12. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle. Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212 [TBL] [Abstract][Full Text] [Related]
13. Acute and chronic ethanol treatment in vivo increases malate-aspartate shuttle capacity in perfused rat liver. Sugano T; Handler JA; Yoshihara H; Kizaki Z; Thurman RG J Biol Chem; 1990 Dec; 265(35):21549-53. PubMed ID: 2254313 [TBL] [Abstract][Full Text] [Related]
14. Rate determining factors of ethanol oxidation in hepatocytes from starved and fed rats: effect of acetaldehyde concentration on the rate of NADH oxidation catalyzed by alcohol dehydrogenase. Vind C; Grunnet N Alcohol Alcohol Suppl; 1987; 1():295-9. PubMed ID: 3426694 [TBL] [Abstract][Full Text] [Related]
15. Effect of a novel hypoglycemic agent, KAD-1229 on glucose metabolism and fructose-2,6-bisphosphate content in isolated hepatocytes of normal rats. Nakashima E; Nakamura J; Koh N; Sakakibara F; Hamada Y; Hotta N Diabetes Res Clin Pract; 1996 Sep; 34(1):13-22. PubMed ID: 8968686 [TBL] [Abstract][Full Text] [Related]
16. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells. Sullivan SG; Stern A Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261 [TBL] [Abstract][Full Text] [Related]
17. Effect of aniline on ethanol oxidation and carbohydrate metabolism in isolated hepatocytes. Efthivoulou MA; Berry MN Biochem Pharmacol; 1996 Sep; 52(6):863-7. PubMed ID: 8781504 [TBL] [Abstract][Full Text] [Related]
18. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism. Alshawi A; Agius L J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586 [TBL] [Abstract][Full Text] [Related]
19. The operation of the malate-aspartate shuttle in the reoxidation of glycolytic NADH in slices of fetal rat liver. Dani A; Bartoli GM; Galeotti T Biochim Biophys Acta; 1977 Dec; 462(3):781-4. PubMed ID: 202312 [TBL] [Abstract][Full Text] [Related]
20. Effects of ethanol on urinary acidification and on gluconeogenesis by isolated renal tubules. Crabb DW; Sidhu R Metabolism; 1993 Oct; 42(10):1249-54. PubMed ID: 8412736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]