BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7957227)

  • 1. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis.
    Kesseler A; Brand MD
    Eur J Biochem; 1994 Nov; 225(3):897-906. PubMed ID: 7957227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cadmium on the control and internal regulation of oxidative phosphorylation in potato tuber mitochondria.
    Kesseler A; Brand MD
    Eur J Biochem; 1994 Nov; 225(3):907-22. PubMed ID: 7957228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative determination of the regulation of oxidative phosphorylation by cadmium in potato tuber mitochondria.
    Kesseler A; Brand MD
    Eur J Biochem; 1994 Nov; 225(3):923-35. PubMed ID: 7957229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis.
    Kesseler A; Diolez P; Brinkmann K; Brand MD
    Eur J Biochem; 1992 Dec; 210(3):775-84. PubMed ID: 1483462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
    Hafner RP; Brand MD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of Proton Leak in Isolated Mitochondria.
    Affourtit C; Wong HS; Brand MD
    Methods Mol Biol; 2018; 1782():157-170. PubMed ID: 29850999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Top-down control analysis of temperature effect on oxidative phosphorylation.
    Dufour S; Rousse N; Canioni P; Diolez P
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):743-51. PubMed ID: 8615765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory.
    Hafner RP; Brown GC; Brand MD
    Eur J Biochem; 1990 Mar; 188(2):313-9. PubMed ID: 2156698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions.
    Harper ME; Brand MD
    Can J Physiol Pharmacol; 1994 Aug; 72(8):899-908. PubMed ID: 7834578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation.
    Ivanina AV; Kurochkin IO; Leamy L; Sokolova IM
    J Exp Biol; 2012 Sep; 215(Pt 18):3142-54. PubMed ID: 22660786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.
    Kavanagh NI; Ainscow EK; Brand MD
    Biochim Biophys Acta; 2000 Feb; 1457(1-2):57-70. PubMed ID: 10692550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes.
    Brand MD; Harper ME; Taylor HC
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction.
    Kurochkin IO; Etzkorn M; Buchwalter D; Leamy L; Sokolova IM
    Am J Physiol Regul Integr Comp Physiol; 2011 Jan; 300(1):R21-31. PubMed ID: 20844261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-down control analysis of the effect of temperature on ectotherm oxidative phosphorylation.
    Chamberlin ME
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R794-800. PubMed ID: 15191905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment.
    Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P
    Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia?
    Borutaite V; Mildaziene V; Brown GC; Brand MD
    Biochim Biophys Acta; 1995 Dec; 1272(3):154-8. PubMed ID: 8541346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protonmotive force as an intermediate in electron transport-linked phosphorylation: problems and prospects.
    Kell DB
    Curr Top Cell Regul; 1992; 33():279-89. PubMed ID: 1323445
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.