These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 7957753)

  • 21. High-pressure liquid chromatographic analysis of hemolymph plasma catecholamines in immune-reactive Aedes aegypti.
    Munkirs DD; Christensen BM; Tracy JW
    J Invertebr Pathol; 1990 Sep; 56(2):267-79. PubMed ID: 2273291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defense reactions of mosquitoes to filarial worms: comparative studies on the response of three different mosquitoes to inoculated Brugia pahangi and Dirofilaria immitis microfilariae.
    Christensen BM; Sutherland DR; Gleason LN
    J Invertebr Pathol; 1984 Nov; 44(3):267-74. PubMed ID: 6501919
    [No Abstract]   [Full Text] [Related]  

  • 23. Hemocyte population changes during the immune response of Aedes aegypti to inoculated microfilariae of Dirofilaria immitis.
    Christensen BM; Huff BM; Miranpuri GS; Harris KL; Christensen LA
    J Parasitol; 1989 Feb; 75(1):119-23. PubMed ID: 2918431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Penetration of the mosquito midgut is not required for Brugia pahangi microfilariae to avoid the melanotic encapsulation response of Armigeres subalbatus.
    Beerntsen BT; Bartholomay LC; Lowery RJ
    Vet Parasitol; 2007 Mar; 144(3-4):371-4. PubMed ID: 17116367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brugia pahangi: the effects of cecropins on microfilariae in vitro and in Aedes aegypti.
    Chalk R; Townson H; Ham PJ
    Exp Parasitol; 1995 May; 80(3):401-6. PubMed ID: 7729475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mosquito transferrin, an acute-phase protein that is up-regulated upon infection.
    Yoshiga T; Hernandez VP; Fallon AM; Law JH
    Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12337-42. PubMed ID: 9356450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemocyte cell surface changes in Aedes aegypti in response to microfilariae of Dirofilaria immitis.
    Nappi AJ; Christensen BM
    J Parasitol; 1986 Dec; 72(6):875-9. PubMed ID: 3819964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transferrin in the mosquito, Culex quinquefasciatus Say (Diptera: Culicidae), up-regulated upon infection and development of the filarial parasite, Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae).
    Paily KP; Kumar BA; Balaraman K
    Parasitol Res; 2007 Jul; 101(2):325-30. PubMed ID: 17323140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relative suitability of Aedes albopictus and Aedes aegypti in North Carolina to support development of Dirofilaria immitis.
    Apperson CS; Engber B; Levine JF
    J Am Mosq Control Assoc; 1989 Sep; 5(3):377-82. PubMed ID: 2584971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mosquito dopa decarboxylase cDNA characterization and blood-meal-induced ovarian expression.
    Ferdig MT; Li J; Severson DW; Christensen BM
    Insect Mol Biol; 1996 May; 5(2):119-26. PubMed ID: 8673262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of Aedes aegypti lipophorin and gene expression of its apolipoproteins.
    van Heusden MC; Thompson F; Dennis J
    Insect Biochem Mol Biol; 1998 Oct; 28(10):733-8. PubMed ID: 9807220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi.
    Lowenberger CA; Ferdig MT; Bulet P; Khalili S; Hoffmann JA; Christensen BM
    Exp Parasitol; 1996 Jul; 83(2):191-201. PubMed ID: 8682188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and sequencing of a cDNA for the hemolymph juvenile hormone binding protein of larval Manduca sexta.
    Lerro KA; Prestwich GD
    J Biol Chem; 1990 Nov; 265(32):19800-6. PubMed ID: 2246263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti.
    Bartholomay LC; Fuchs JF; Cheng LL; Beck ET; Vizioli J; Lowenberger C; Christensen BM
    Insect Mol Biol; 2004 Apr; 13(2):125-32. PubMed ID: 15056359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and expression of a larval immunogenic protein from the cattle tick Boophilus annulatus.
    Shahein YE
    Vet Immunol Immunopathol; 2008 Feb; 121(3-4):281-9. PubMed ID: 18054085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes.
    Kambris Z; Cook PE; Phuc HK; Sinkins SP
    Science; 2009 Oct; 326(5949):134-6. PubMed ID: 19797660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A potential role for phenylalanine hydroxylase in mosquito immune responses.
    Johnson JK; Rocheleau TA; Hillyer JF; Chen CC; Li J; Christensen BM
    Insect Biochem Mol Biol; 2003 Mar; 33(3):345-54. PubMed ID: 12609519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beta-ig. Molecular cloning and in situ hybridization in corneal tissues.
    Rawe IM; Zhan Q; Burrows R; Bennett K; Cintron C
    Invest Ophthalmol Vis Sci; 1997 Apr; 38(5):893-900. PubMed ID: 9112985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vitelline envelope genes of the yellow fever mosquito, Aedes aegypti.
    Edwards MJ; Severson DW; Hagedorn HH
    Insect Biochem Mol Biol; 1998 Dec; 28(12):915-25. PubMed ID: 9887508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel gene from Brugia sp. that encodes a cytotoxic fatty acid binding protein allergen recognized by canine monoclonal IgE and serum IgE from infected dogs.
    Orton SM; Arasu P; Hammerberg B
    J Parasitol; 2007 Dec; 93(6):1378-87. PubMed ID: 18314684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.