These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Defense reactions of mosquitoes to filarial worms: comparative studies on the response of three different mosquitoes to inoculated Brugia pahangi and Dirofilaria immitis microfilariae. Christensen BM; Sutherland DR; Gleason LN J Invertebr Pathol; 1984 Nov; 44(3):267-74. PubMed ID: 6501919 [No Abstract] [Full Text] [Related]
23. Hemocyte population changes during the immune response of Aedes aegypti to inoculated microfilariae of Dirofilaria immitis. Christensen BM; Huff BM; Miranpuri GS; Harris KL; Christensen LA J Parasitol; 1989 Feb; 75(1):119-23. PubMed ID: 2918431 [TBL] [Abstract][Full Text] [Related]
24. Penetration of the mosquito midgut is not required for Brugia pahangi microfilariae to avoid the melanotic encapsulation response of Armigeres subalbatus. Beerntsen BT; Bartholomay LC; Lowery RJ Vet Parasitol; 2007 Mar; 144(3-4):371-4. PubMed ID: 17116367 [TBL] [Abstract][Full Text] [Related]
25. Brugia pahangi: the effects of cecropins on microfilariae in vitro and in Aedes aegypti. Chalk R; Townson H; Ham PJ Exp Parasitol; 1995 May; 80(3):401-6. PubMed ID: 7729475 [TBL] [Abstract][Full Text] [Related]
26. Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Yoshiga T; Hernandez VP; Fallon AM; Law JH Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12337-42. PubMed ID: 9356450 [TBL] [Abstract][Full Text] [Related]
27. Hemocyte cell surface changes in Aedes aegypti in response to microfilariae of Dirofilaria immitis. Nappi AJ; Christensen BM J Parasitol; 1986 Dec; 72(6):875-9. PubMed ID: 3819964 [TBL] [Abstract][Full Text] [Related]
28. Transferrin in the mosquito, Culex quinquefasciatus Say (Diptera: Culicidae), up-regulated upon infection and development of the filarial parasite, Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae). Paily KP; Kumar BA; Balaraman K Parasitol Res; 2007 Jul; 101(2):325-30. PubMed ID: 17323140 [TBL] [Abstract][Full Text] [Related]
29. Relative suitability of Aedes albopictus and Aedes aegypti in North Carolina to support development of Dirofilaria immitis. Apperson CS; Engber B; Levine JF J Am Mosq Control Assoc; 1989 Sep; 5(3):377-82. PubMed ID: 2584971 [TBL] [Abstract][Full Text] [Related]
31. Biosynthesis of Aedes aegypti lipophorin and gene expression of its apolipoproteins. van Heusden MC; Thompson F; Dennis J Insect Biochem Mol Biol; 1998 Oct; 28(10):733-8. PubMed ID: 9807220 [TBL] [Abstract][Full Text] [Related]
32. Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi. Lowenberger CA; Ferdig MT; Bulet P; Khalili S; Hoffmann JA; Christensen BM Exp Parasitol; 1996 Jul; 83(2):191-201. PubMed ID: 8682188 [TBL] [Abstract][Full Text] [Related]
33. Cloning and sequencing of a cDNA for the hemolymph juvenile hormone binding protein of larval Manduca sexta. Lerro KA; Prestwich GD J Biol Chem; 1990 Nov; 265(32):19800-6. PubMed ID: 2246263 [TBL] [Abstract][Full Text] [Related]
34. Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti. Bartholomay LC; Fuchs JF; Cheng LL; Beck ET; Vizioli J; Lowenberger C; Christensen BM Insect Mol Biol; 2004 Apr; 13(2):125-32. PubMed ID: 15056359 [TBL] [Abstract][Full Text] [Related]
35. Molecular cloning and expression of a larval immunogenic protein from the cattle tick Boophilus annulatus. Shahein YE Vet Immunol Immunopathol; 2008 Feb; 121(3-4):281-9. PubMed ID: 18054085 [TBL] [Abstract][Full Text] [Related]