These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 7957943)
1. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. Bao W; Fukushima Y; Jensen KA; Moen MA; Hammel KE FEBS Lett; 1994 Nov; 354(3):297-300. PubMed ID: 7957943 [TBL] [Abstract][Full Text] [Related]
2. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071 [TBL] [Abstract][Full Text] [Related]
3. Involvement of lipid peroxidation in the degradation of a non-phenolic lignin model compound by manganese peroxidase of the litter-decomposing fungus Stropharia coronilla. Kapich AN; Steffen KT; Hofrichter M; Hatakka A Biochem Biophys Res Commun; 2005 May; 330(2):371-7. PubMed ID: 15796893 [TBL] [Abstract][Full Text] [Related]
4. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation? Hildén L; Johansson G; Pettersson G; Li J; Ljungquist P; Henriksson G FEBS Lett; 2000 Jul; 477(1-2):79-83. PubMed ID: 10899314 [TBL] [Abstract][Full Text] [Related]
5. Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and 14C-labeled lignins. Kapich A; Hofrichter M; Vares T; Hatakka A Biochem Biophys Res Commun; 1999 May; 259(1):212-9. PubMed ID: 10334942 [TBL] [Abstract][Full Text] [Related]
6. Manganese, Mn-dependent peroxidases, and the biodegradation of lignin. Forrester IT; Grabski AC; Burgess RR; Leatham GF Biochem Biophys Res Commun; 1988 Dec; 157(3):992-9. PubMed ID: 3207431 [TBL] [Abstract][Full Text] [Related]
7. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. Wariishi H; Valli K; Renganathan V; Gold MH J Biol Chem; 1989 Aug; 264(24):14185-91. PubMed ID: 2760063 [TBL] [Abstract][Full Text] [Related]
8. Peroxyl radicals are potential agents of lignin biodegradation. Kapich AN; Jensen KA; Hammel KE FEBS Lett; 1999 Nov; 461(1-2):115-9. PubMed ID: 10561507 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound. Tuor U; Wariishi H; Schoemaker HE; Gold MH Biochemistry; 1992 Jun; 31(21):4986-95. PubMed ID: 1599925 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+. Popp JL; Kirk TK Arch Biochem Biophys; 1991 Jul; 288(1):145-8. PubMed ID: 1898012 [TBL] [Abstract][Full Text] [Related]
11. The white rot basidiomycete Kapich AN; Suzuki H; Hirth KC; Fernández-Fueyo E; Martínez AT; Houtman CJ; Hammel KE Appl Environ Microbiol; 2024 Apr; 90(4):e0204423. PubMed ID: 38483171 [TBL] [Abstract][Full Text] [Related]
13. Effect of Mn(II) on reactions catalyzed by lignin peroxidase from Phanerochaete chrysosporium. Bono JJ; Goulas P; Boe JF; Portet N; Seris JL Eur J Biochem; 1990 Aug; 192(1):189-93. PubMed ID: 2401291 [TBL] [Abstract][Full Text] [Related]
14. Comparative evaluation of manganese peroxidase- and Mn(III)-initiated peroxidation of C18 unsaturated fatty acids by different methods. Kapich AN; Korneichik TV; Hammel KE; Hatakka A Enzyme Microb Technol; 2011 Jun; 49(1):25-9. PubMed ID: 22112267 [TBL] [Abstract][Full Text] [Related]
15. Insights into lignin degradation and its potential industrial applications. Abdel-Hamid AM; Solbiati JO; Cann IK Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151 [TBL] [Abstract][Full Text] [Related]
16. Degradability of chlorine-free bleachery effluent lignins by two fungi: effects on lignin subunit type and on polymer molecular weight. Bergbauer M; Eggert C Can J Microbiol; 1994 Mar; 40(3):192-7. PubMed ID: 8012907 [TBL] [Abstract][Full Text] [Related]
17. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. Liers C; Arnstadt T; Ullrich R; Hofrichter M FEMS Microbiol Ecol; 2011 Oct; 78(1):91-102. PubMed ID: 21631549 [TBL] [Abstract][Full Text] [Related]
18. Production and chemiluminescent free radical reactions of glyoxal in lipid peroxidation of linoleic acid by the ligninolytic enzyme, manganese peroxidase. Watanabe T; Shirai N; Okada H; Honda Y; Kuwahara M Eur J Biochem; 2001 Dec; 268(23):6114-22. PubMed ID: 11733005 [TBL] [Abstract][Full Text] [Related]
19. Aromatic ring cleavage of a non-phenolic beta-O-4 lignin model dimer by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole. Kawai S; Nakagawa M; Ohashi H FEBS Lett; 1999 Mar; 446(2-3):355-8. PubMed ID: 10100873 [TBL] [Abstract][Full Text] [Related]
20. Preferential degradation of phenolic lignin units by two white rot fungi. Camarero S; Galletti GC; Martínez AT Appl Environ Microbiol; 1994 Dec; 60(12):4509-16. PubMed ID: 7811086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]