These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7958038)

  • 1. Visual field interpretation with a personal computer based neural network.
    Mutlukan E; Keating D
    Eye (Lond); 1994; 8 ( Pt 3)():321-3. PubMed ID: 7958038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms.
    Bizios D; Heijl A; Bengtsson B
    J Glaucoma; 2007 Jan; 16(1):20-8. PubMed ID: 17224745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields.
    Bengtsson B; Bizios D; Heijl A
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3730-6. PubMed ID: 16186356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of automated perimetry for glaucoma by neural network.
    Goldbaum MH; Sample PA; White H; Côlt B; Raphaelian P; Fechtner RD; Weinreb RN
    Invest Ophthalmol Vis Sci; 1994 Aug; 35(9):3362-73. PubMed ID: 8056511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural attractor network for application in visual field data classification.
    Fink W
    Phys Med Biol; 2004 Jul; 49(13):2799-809. PubMed ID: 15285248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-assisted interpretation of visual fields in glaucoma.
    Asman P
    Acta Ophthalmol Suppl (1985); 1992; (206):1-47. PubMed ID: 1467748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural networks for visual field analysis: how do they compare with other algorithms?
    Lietman T; Eng J; Katz J; Quigley HA
    J Glaucoma; 1999 Feb; 8(1):77-80. PubMed ID: 10084278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel paediatric game-based visual-fields assessor.
    Aslam TM; Rahman W; Henson D; Khaw PT
    Br J Ophthalmol; 2011 Jul; 95(7):921-4. PubMed ID: 21464037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural network classification of corneal topography. Preliminary demonstration.
    Maeda N; Klyce SD; Smolek MK
    Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1327-35. PubMed ID: 7775110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of an automatic discrimination system for glaucomatous visual fields based on neuro-fuzzy nets].
    García Feijoó J; Carmona Suárez EJ; Gallardo LM; González Hernández M; Fernández Vidal A; González de la Rosa M; Mira Mira J; García Sánchez J
    Arch Soc Esp Oftalmol; 2002 Dec; 77(12):669-76. PubMed ID: 12471513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computerised perimetry with moving and steady fixation in children.
    Mutlukan E; Damato BE
    Eye (Lond); 1993; 7 ( Pt 4)():554-61. PubMed ID: 8253238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oculokinetic perimetry compared with Humphrey visual field analysis in the detection of glaucomatous visual field loss.
    Wishart PK
    Eye (Lond); 1993; 7 ( Pt 1)():113-21. PubMed ID: 8325400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential usefulness of an artificial neural network for assessing ventricular size.
    Fukuda H; Inoue Y; Nakajima H; Usuki N; Saiwai S; Miyamoto T; Onoyama Y
    Radiat Med; 1995; 13(1):23-6. PubMed ID: 7597200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability and validity of useful field of view test scores as administered by personal computer.
    Edwards JD; Vance DE; Wadley VG; Cissell GM; Roenker DL; Ball KK
    J Clin Exp Neuropsychol; 2005 Jul; 27(5):529-43. PubMed ID: 16019630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue versus white stimuli in ocular hypertension with the Friedmann Mark 1 Visual Field Analyser.
    Hugkulstone CE; Vernon SA
    Eye (Lond); 1992; 6 ( Pt 4)():356-60. PubMed ID: 1478305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability in patients with glaucomatous visual field damage is reduced using size V stimuli.
    Wall M; Kutzko KE; Chauhan BC
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):426-35. PubMed ID: 9040476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributed population mechanism for the 3-D oculomotor reference frame transformation.
    Smith MA; Crawford JD
    J Neurophysiol; 2005 Mar; 93(3):1742-61. PubMed ID: 15537819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of disc morphology quantified on stereophotographs to results by Heidelberg Retina Tomograph II, GDx variable corneal compensation, and visual field tests.
    Saito H; Tsutsumi T; Iwase A; Tomidokoro A; Araie M
    Ophthalmology; 2010 Feb; 117(2):282-9. PubMed ID: 19969361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of matrix perimetry with octopus perimetry for assessing glaucomatous visual field defects.
    Lan YW; Hsieh JW; Sun FJ
    J Glaucoma; 2011 Feb; 20(2):126-32. PubMed ID: 20436367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.