These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 7958227)

  • 1. Analysis of the interactions of calcium and trifluoroperazine with skeletal muscle calsequestrin.
    Brown GR; Morgan R; Michelangeli F
    Biochem Soc Trans; 1994 May; 22(2):159S. PubMed ID: 7958227
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization.
    Park H; Park IY; Kim E; Youn B; Fields K; Dunker AK; Kang C
    J Biol Chem; 2004 Apr; 279(17):18026-33. PubMed ID: 14871888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-capacity Ca2+ binding of human skeletal calsequestrin.
    Sanchez EJ; Lewis KM; Danna BR; Kang C
    J Biol Chem; 2012 Mar; 287(14):11592-601. PubMed ID: 22337878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and structure-function of calsequestrin.
    Kang C; Trumble WR; Dunker AK
    Methods Mol Biol; 2002; 172():281-94. PubMed ID: 11833354
    [No Abstract]   [Full Text] [Related]  

  • 5. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Ca2+ release from the ryanodine receptor of sarcoplasmic reticulum.
    O'Sullivan GH; Heffron JJ
    Biochem Soc Trans; 1995 May; 23(2):358S. PubMed ID: 7545618
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of Post-Translational Modifications to Calsequestrins of Cardiac and Skeletal Muscle.
    Lewis KM; Munske GR; Byrd SS; Kang J; Cho HJ; Ríos E; Kang C
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27649144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of calsequestrin as a target for anthracyclines: comparison of functional effects of daunorubicin, daunorubicinol, and trifluoperazine.
    Charlier HA; Olson RD; Thornock CM; Mercer WK; Olson DR; Broyles TS; Muhlestein DJ; Larson CL; Cusack BJ; Shadle SE
    Mol Pharmacol; 2005 May; 67(5):1505-12. PubMed ID: 15705743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation.
    Beard NA; Casarotto MG; Wei L; Varsányi M; Laver DR; Dulhunty AF
    Biophys J; 2005 May; 88(5):3444-54. PubMed ID: 15731387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region.
    Ohnishi M; Reithmeier RA
    Biochemistry; 1987 Nov; 26(23):7458-65. PubMed ID: 3427087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle.
    Manno C; Figueroa LC; Gillespie D; Fitts R; Kang C; Franzini-Armstrong C; Rios E
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):E638-E647. PubMed ID: 28069951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terbium-binding properties of calsequestrin from skeletal muscle sarcoplasmic reticulum.
    Ohnishi M; Reithmeier RA
    Biochim Biophys Acta; 1987 Sep; 915(2):180-7. PubMed ID: 3651471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A better method to measure total calcium in biological samples yields immediate payoffs.
    Manno C; Ríos E
    J Gen Physiol; 2015 Mar; 145(3):167-71. PubMed ID: 25712015
    [No Abstract]   [Full Text] [Related]  

  • 15. Complex formation between calsequestrin and the ryanodine receptor in fast- and slow-twitch rabbit skeletal muscle.
    Murray BE; Ohlendieck K
    FEBS Lett; 1998 Jun; 429(3):317-22. PubMed ID: 9662440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subproteomics analysis of Ca+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle.
    Doran P; Dowling P; Lohan J; McDonnell K; Poetsch S; Ohlendieck K
    Eur J Biochem; 2004 Oct; 271(19):3943-52. PubMed ID: 15373840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protons induce calsequestrin conformational changes.
    Hidalgo C; Donoso P; Rodriguez PH
    Biophys J; 1996 Oct; 71(4):2130-7. PubMed ID: 8889188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymerization of calsequestrin. Implications for Ca2+ regulation.
    Park H; Wu S; Dunker AK; Kang C
    J Biol Chem; 2003 May; 278(18):16176-82. PubMed ID: 12594204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.