BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7958313)

  • 1. Bacterial and host interactions during the biogenesis, toxicity and immunogenicity of Escherichia coli heat-labile enterotoxin.
    Hirst TR; Nashar TO; Eaglestone S; Lencer WI; Webb HM; Yu J
    Biochem Soc Trans; 1994 May; 22(2):306-9. PubMed ID: 7958313
    [No Abstract]   [Full Text] [Related]  

  • 2. Does enteropathogenic Escherichia coli produce heat-labile enterotoxin, heat-stable enterotoxins a or b, or cholera toxin A subunits?
    Long-Krug SA; Weikel CS; Tiemens KT; Hewlett EL; Levine MM; Guerrant RL
    Infect Immun; 1984 Nov; 46(2):612-4. PubMed ID: 6389354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of receptor binding in the immunogenicity, adjuvanticity and therapeutic properties of cholera toxin and Escherichia coli heat-labile enterotoxin.
    Nashar TO; Williams NA; Hirst TR
    Med Microbiol Immunol; 1998 Jun; 187(1):3-10. PubMed ID: 9749977
    [No Abstract]   [Full Text] [Related]  

  • 4. A genetically detoxified derivative of heat-labile Escherichia coli enterotoxin induces neutralizing antibodies against the A subunit.
    Pizza M; Fontana MR; Giuliani MM; Domenighini M; Magagnoli C; Giannelli V; Nucci D; Hol W; Manetti R; Rappuoli R
    J Exp Med; 1994 Dec; 180(6):2147-53. PubMed ID: 7964489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins.
    Rappuoli R; Pizza M; Douce G; Dougan G
    Immunol Today; 1999 Nov; 20(11):493-500. PubMed ID: 10529776
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural basis for the differential toxicity of cholera toxin and Escherichia coli heat-labile enterotoxin. Construction of hybrid toxins identifies the A2-domain as the determinant of differential toxicity.
    Rodighiero C; Aman AT; Kenny MJ; Moss J; Lencer WI; Hirst TR
    J Biol Chem; 1999 Feb; 274(7):3962-9. PubMed ID: 9933586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines.
    Glenn GM; Francis DH; Danielsen EM
    Infect Immun; 2009 Dec; 77(12):5206-15. PubMed ID: 19737904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological cross-reactivity between a heat-labile enterotoxin(s) of Escherichia coli and subunits of Vibrio cholerae enterotoxin.
    Clements JD; Finkelstein RA
    Infect Immun; 1978 Sep; 21(3):1036-9. PubMed ID: 361573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic detoxification of bacterial toxins.
    Pizza M; Fontana MR; Scarlato V; Rappuoli R
    Methods Mol Med; 2003; 87():133-52. PubMed ID: 12958454
    [No Abstract]   [Full Text] [Related]  

  • 10. Detection of heat-labile enterotoxin-producing Escherichia coli strains by a staphylococcal coagglutination technique.
    Sen AK; Gulati AK; Agarwal RK; Sanyal SC
    J Diarrhoeal Dis Res; 1984 Mar; 2(1):33-6. PubMed ID: 6389665
    [No Abstract]   [Full Text] [Related]  

  • 11. Cholera toxin and Escherichia coli heat-labile enterotoxin, but not their nontoxic counterparts, improve the antigen-presenting cell function of human B lymphocytes.
    Negri DR; Pinto D; Vendetti S; Patrizio M; Sanchez M; Riccomi A; Ruggiero P; Del Giudice G; De Magistris MT
    Infect Immun; 2009 May; 77(5):1924-35. PubMed ID: 19223474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The gastrointestinal immune system: cholera toxin and E. coli heat-labile enterotoxin as immunomodulators].
    Kim J; Kiyono H
    Tanpakushitsu Kakusan Koso; 2001 Mar; 46(4 Suppl):547-55. PubMed ID: 11268659
    [No Abstract]   [Full Text] [Related]  

  • 13. Targeting of plant-derived vaccine antigens to immunoresponsive mucosal sites.
    Rigano MM; Sala F; Arntzen CJ; Walmsley AM
    Vaccine; 2003 Jan; 21(7-8):809-11. PubMed ID: 12531365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Method for the detection and determination of heat-labile Escherichia coli enterotoxin by an immunoenzyme technic on a new polystyrene support adapted for a test kit].
    Germani Y; Begaud E; Dassy B; Legonidec G; Guesdon JL
    Ann Microbiol (Paris); 1984; 135B(3):297-310. PubMed ID: 6398008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins.
    Connell TD
    Expert Rev Vaccines; 2007 Oct; 6(5):821-34. PubMed ID: 17931161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antigenic determinants of the cholera/coli family of enterotoxins.
    Finkelstein RA; Burks MF; Zupan A; Dallas WS; Jacob CO; Ludwig DS
    Rev Infect Dis; 1987; 9 Suppl 5():S490-502. PubMed ID: 2446368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ADP-ribosylation and G(M1)-binding activity in the mucosal immunogenicity and adjuvanticity of the Escherichia coli heat-labile enterotoxin and Vibrio cholerae cholera toxin.
    de Haan L; Verweij W; Agsteribbe E; Wilschut J
    Immunol Cell Biol; 1998 Jun; 76(3):270-9. PubMed ID: 9682971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Vibrio cholerae and Escherichia coli heat-labile enterotoxin by enzyme-linked immunosorbent assay (ELISA).
    Kétyi I; Pácsa AS
    Acta Microbiol Acad Sci Hung; 1980; 27(1):89-97. PubMed ID: 6998259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunity to heat-labile enterotoxins of porcine and human Escherichia coli strains achieved with synthetic cholera toxin peptides.
    Jacob CO; Arnon R; Finkelstein RA
    Infect Immun; 1986 May; 52(2):562-7. PubMed ID: 3009330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of a potential endoplasmic reticulum retention sequence (RDEL) and the Golgi complex in the cytotonic activity of Escherichia coli heat-labile enterotoxin.
    Cieplak W; Messer RJ; Konkel ME; Grant CC
    Mol Microbiol; 1995 May; 16(4):789-800. PubMed ID: 7476173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.