BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 7958421)

  • 1. Cloning and characterization of HLC-32, a 32-kDa protein component of the sea urchin extraembryonic matrix, the hyaline layer.
    Brennan C; Robinson JJ
    Dev Biol; 1994 Oct; 165(2):556-65. PubMed ID: 7958421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel sea urchin nuclear receptor encoded by alternatively spliced maternal RNAs.
    Kontrogianni-Konstantopoulos A; Vlahou A; Vu D; Flytzanis CN
    Dev Biol; 1996 Aug; 177(2):371-82. PubMed ID: 8806817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SpEGF III gene encodes a member of the fibropellins: EGF repeat-containing proteins that form the apical lamina of the sea urchin embryo.
    Bisgrove BW; Raff RA
    Dev Biol; 1993 Jun; 157(2):526-38. PubMed ID: 8500658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA sequence and pattern of expression of the sea urchin (Paracentrotus lividus) alpha-tubulin genes.
    Gianguzza F; Di Bernardo MG; Sollazzo M; Palla F; Ciaccio M; Carra E; Spinelli G
    Mol Reprod Dev; 1989; 1(3):170-81. PubMed ID: 2627367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular analysis of hyalin--a substrate for cell adhesion in the hyaline layer of the sea urchin embryo.
    Wessel GM; Berg L; Adelson DL; Cannon G; McClay DR
    Dev Biol; 1998 Jan; 193(2):115-26. PubMed ID: 9473317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLAUF is a novel P. lividus sea urchin RNA-binding protein.
    Pulcrano G; Leonardo R; Aniello F; Mancini P; Piscopo M; Branno M; Fucci L
    Gene; 2005 Feb; 347(1):99-107. PubMed ID: 15715964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of alphaP integrin in embryos of the sea urchin Strongylocentrotus purpuratus.
    Susan JM; Just ML; Lennarz WJ
    Biochem Biophys Res Commun; 2000 Jun; 272(3):929-35. PubMed ID: 10860853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning, expression, and localization of a new member of a Paracentrotus lividus cell surface multigene family.
    Montana G; Romancino DP; di Carlo MD
    Mol Reprod Dev; 1996 May; 44(1):36-43. PubMed ID: 8722690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental regulation of elongation factor-1 delta in sea urchin suggests appearance of a mechanism for alternative poly(A) site selection in gastrulae.
    Delalande C; Monnier A; Minella O; Genevière AM; Mulner-Lorillon O; Bellé R; Cormier P
    Exp Cell Res; 1998 Jul; 242(1):228-34. PubMed ID: 9665820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of sea urchin unconventional myosins and analysis of their patterns of expression during early embryogenesis.
    Sirotkin V; Seipel S; Krendel M; Bonder EM
    Mol Reprod Dev; 2000 Oct; 57(2):111-26. PubMed ID: 10984411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of novel beta integrin subunits from a sea urchin.
    Marsden M; Burke RD
    Dev Biol; 1997 Jan; 181(2):234-45. PubMed ID: 9013933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the sequence and expression during sea urchin development of two members of a multigenic family, coding for butanol-extractable proteins.
    Di Carlo M; Montana G; Bonura A
    Mol Reprod Dev; 1990 Jan; 25(1):28-36. PubMed ID: 1697474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of new skeletogenic genes of the sea urchin embryo by use of conserved sequence motifs among the SM50 gene family.
    Lee YH; Kwak J; Britten RJ; Davidson EH
    Zygote; 2000; 8 Suppl 1():S74. PubMed ID: 11191327
    [No Abstract]   [Full Text] [Related]  

  • 14. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains.
    Hodor PG; Illies MR; Broadley S; Ettensohn CA
    Dev Biol; 2000 Jun; 222(1):181-94. PubMed ID: 10885756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpOct, a gene encoding the major octamer-binding protein in sea urchin embryos: expression profile, evolutionary relationships, and DNA binding of expressed protein.
    Char BR; Bell JR; Dovala J; Coffman JA; Harrington MG; Becerra JC; Davidson EH; Calzone FJ; Maxson R
    Dev Biol; 1993 Aug; 158(2):350-63. PubMed ID: 8344456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo.
    Hertzler PL; McClay DR
    Dev Biol; 1999 Mar; 207(1):1-13. PubMed ID: 10049560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the gene catalogue of sea urchin development: the construction and analysis of an unfertilized egg cDNA library highly normalized by oligonucleotide fingerprinting.
    Poustka AJ; Herwig R; Krause A; Hennig S; Meier-Ewert S; Lehrach H
    Genomics; 1999 Jul; 59(2):122-33. PubMed ID: 10409423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two distinct forms of USF in the Lytechinus sea urchin embryo do not play a role in LpS1 gene inactivation upon disruption of the extracellular matrix.
    George JM; Seid CA; Lee H; Tomlinson CR
    Mol Reprod Dev; 1996 Sep; 45(1):1-9. PubMed ID: 8873063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma.
    Haag ES; Sly BJ; Andrews ME; Raff RA
    Dev Biol; 1999 Jul; 211(1):77-87. PubMed ID: 10373306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The univin gene encodes a member of the transforming growth factor-beta superfamily with restricted expression in the sea urchin embryo.
    Stenzel P; Angerer LM; Smith BJ; Angerer RC; Vale WW
    Dev Biol; 1994 Nov; 166(1):149-58. PubMed ID: 7958442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.