BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7958498)

  • 21. Altered microvascular reactivity in streptozotocin-induced diabetes in rats.
    Hill MA; Larkins RG
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1438-45. PubMed ID: 2531551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic captopril administration decreases vasodilator responses in skeletal muscle arterioles.
    Frisbee JC; Weber DS; Lombard JH
    Am J Hypertens; 1999 Jul; 12(7):705-15. PubMed ID: 10411368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of insulin and the combination of insulin plus metformin (glucophage) on microvascular reactivity in control and diabetic hamsters.
    Bouskela E; Cyrino FZ; Wiernsperger N
    Angiology; 1997 Jun; 48(6):503-14. PubMed ID: 9194536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelial cell calcium and vascular control.
    Falcone JC
    Med Sci Sports Exerc; 1995 Aug; 27(8):1165-9. PubMed ID: 7476061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Depressed arteriolar responsiveness to norepinephrine in streptozotocin-induced diabetes in the rat.
    Myers TO; Messina EJ
    Prostaglandins; 1996 Nov; 52(5):415-30. PubMed ID: 8948508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats.
    Falcone JC; Granger HJ; Meininger GA
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H1847-55. PubMed ID: 8285222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide modulates the interaction of pressure-induced wall mechanics and myogenic response of rat intramural coronary arterioles.
    Szekeres M; Kaley G; Nádasy GL; Dézsi L; Koller A
    Acta Physiol Hung; 2006 Mar; 93(1):1-12. PubMed ID: 16830688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles.
    Hong K; Zhao G; Hong Z; Sun Z; Yang Y; Clifford PS; Davis MJ; Meininger GA; Hill MA
    J Physiol; 2016 Dec; 594(23):7027-7047. PubMed ID: 27531064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impaired myogenic responsiveness of the afferent arteriole in streptozotocin-induced diabetic rats: role of eicosanoid derangements.
    Hayashi K; Epstein M; Loutzenhiser R; Forster H
    J Am Soc Nephrol; 1992 May; 2(11):1578-86. PubMed ID: 1610978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced renal mass hypertension, but not high salt diet, alters skeletal muscle arteriolar distensibility and myogenic responses.
    Frisbee JC; Lombard JH
    Microvasc Res; 2000 Mar; 59(2):255-64. PubMed ID: 10684731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endothelial independence of myogenic response in isolated skeletal muscle arterioles.
    Falcone JC; Davis MJ; Meininger GA
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H130-5. PubMed ID: 1992791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation.
    Tilton RG; Chang K; Hasan KS; Smith SR; Petrash JM; Misko TP; Moore WM; Currie MG; Corbett JA; McDaniel ML
    Diabetes; 1993 Feb; 42(2):221-32. PubMed ID: 7678825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endothelial K(ca) channels mediate flow-dependent dilation of arterioles of skeletal muscle and mesentery.
    Sun D; Huang A; Koller A; Kaley G
    Microvasc Res; 2001 Mar; 61(2):179-86. PubMed ID: 11254397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow-dependent dilation and myogenic constriction interact to establish the resistance of skeletal muscle arterioles.
    Sun D; Huang A; Koller A; Kaley G
    Microcirculation; 1995 Sep; 2(3):289-95. PubMed ID: 8748953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lack of flow-mediated dilation and enhanced angiotensin II-induced constriction in skeletal muscle arterioles of lupus-prone autoimmune mice.
    Bagi Z; Hamar P; Kardos M; Koller A
    Lupus; 2006; 15(6):326-34. PubMed ID: 16830878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical model for the myogenic response in the microcirculation: Part II--Experimental evaluation in rat cremaster muscle.
    Lee S; Schmid-Schönbein GW
    J Biomech Eng; 1996 May; 118(2):152-7. PubMed ID: 8738778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endothelium-independent constriction of isolated, pressurized arterioles by Nomega-nitro-L-arginine methyl ester (L-NAME).
    Murphy TV; Kotecha N; Hill MA
    Br J Pharmacol; 2007 Jul; 151(5):602-9. PubMed ID: 17471179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus.
    Mayhan WG; Simmons LK; Sharpe GM
    Am J Physiol; 1991 Feb; 260(2 Pt 2):H319-26. PubMed ID: 1825454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Limitation of arteriolar myogenic activity by local nitric oxide: segment-specific effect of dietary salt.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol; 1999 Nov; 277(5):H1946-55. PubMed ID: 10564151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes.
    Schnackenberg CG; Wilcox CS
    Kidney Int; 2001 May; 59(5):1859-64. PubMed ID: 11318957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.