These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 7958841)

  • 1. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones.
    Coetzee T; Herschlag D; Belfort M
    Genes Dev; 1994 Jul; 8(13):1575-88. PubMed ID: 7958841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assaying RNA chaperone activity in vivo using a novel RNA folding trap.
    Clodi E; Semrad K; Schroeder R
    EMBO J; 1999 Jul; 18(13):3776-82. PubMed ID: 10393192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of RNA chaperone activity in vivo and in vitro using misfolded group I ribozymes.
    Semrad K
    Methods Mol Biol; 2014; 1086():239-54. PubMed ID: 24136608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo.
    Semrad K; Schroeder R
    Genes Dev; 1998 May; 12(9):1327-37. PubMed ID: 9573049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro.
    Zhang A; Derbyshire V; Salvo JL; Belfort M
    RNA; 1995 Oct; 1(8):783-93. PubMed ID: 7493324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assaying RNA chaperone activity in vivo in bacteria using a ribozyme folding trap.
    Prenninger S; Schroeder R; Semrad K
    Nat Protoc; 2006; 1(3):1273-7. PubMed ID: 17406411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo.
    Waldsich C; Grossberger R; Schroeder R
    Genes Dev; 2002 Sep; 16(17):2300-12. PubMed ID: 12208852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catalytic core of the sunY intron of bacteriophage T4.
    Xu MQ; Shub DA
    Gene; 1989 Oct; 82(1):77-82. PubMed ID: 2684777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique group of self-splicing introns in bacteriophage T4.
    Khan AU; Ajamaluddin M; Ahmad M
    Indian J Biochem Biophys; 2001 Oct; 38(5):289-93. PubMed ID: 11886074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mutations of the bulged nucleotide in the conserved P7 pairing element of the phage T4 td intron on ribozyme function.
    Schroeder R; von Ahsen U; Belfort M
    Biochemistry; 1991 Apr; 30(13):3295-303. PubMed ID: 2009267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of selective, small-molecule inhibitors of RNA complexes--II. Self-splicing group I intron ribozyme.
    Mei HY; Cui M; Lemrow SM; Czarnik AW
    Bioorg Med Chem; 1997 Jun; 5(6):1185-95. PubMed ID: 9222512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA chaperone activity of L1 ribosomal proteins: phylogenetic conservation and splicing inhibition.
    Ameres SL; Shcherbakov D; Nikonova E; Piendl W; Schroeder R; Semrad K
    Nucleic Acids Res; 2007; 35(11):3752-63. PubMed ID: 17517772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of bacteriophage T4 middle transcription by the T4 proteins MotA and AsiA occurs at two distinct steps in the transcription cycle.
    Adelman K; Brody EN; Buckle M
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15247-52. PubMed ID: 9860954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones.
    Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA.
    Zhang F; Ramsay ES; Woodson SA
    RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli.
    Semrad K; Green R; Schroeder R
    RNA; 2004 Dec; 10(12):1855-60. PubMed ID: 15525706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH dependence of self-splicing by the group IA2 intron in a pre-mRNA derived from the nrdB gene of bacteriophage T4.
    Sjögren AS; Strömberg R; Sjöberg BM
    Nucleic Acids Res; 1997 Sep; 25(17):3543-9. PubMed ID: 9254717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.