These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 7958861)
1. A sigma 54 transcriptional activator also functions as a pole-specific repressor in Caulobacter. Wingrove JA; Gober JW Genes Dev; 1994 Aug; 8(15):1839-52. PubMed ID: 7958861 [TBL] [Abstract][Full Text] [Related]
2. A gene coding for a putative sigma 54 activator is developmentally regulated in Caulobacter crescentus. Marques MV; Gomes SL; Gober JW J Bacteriol; 1997 Sep; 179(17):5502-10. PubMed ID: 9287006 [TBL] [Abstract][Full Text] [Related]
3. Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes. Ramakrishnan G; Zhao JL; Newton A J Bacteriol; 1994 Dec; 176(24):7587-600. PubMed ID: 8002583 [TBL] [Abstract][Full Text] [Related]
4. Spatial and temporal phosphorylation of a transcriptional activator regulates pole-specific gene expression in Caulobacter. Wingrove JA; Mangan EK; Gober JW Genes Dev; 1993 Oct; 7(10):1979-92. PubMed ID: 8406002 [TBL] [Abstract][Full Text] [Related]
5. FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus. Mullin DA; Van Way SM; Blankenship CA; Mullin AH J Bacteriol; 1994 Oct; 176(19):5971-81. PubMed ID: 7928958 [TBL] [Abstract][Full Text] [Related]
6. Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. Wu J; Benson AK; Newton A J Bacteriol; 1995 Jun; 177(11):3241-50. PubMed ID: 7768824 [TBL] [Abstract][Full Text] [Related]
7. The role of FlbD in regulation of flagellar gene transcription in Caulobacter crescentus. Benson AK; Wu J; Newton A Res Microbiol; 1994; 145(5-6):420-30. PubMed ID: 7855428 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the Caulobacter crescentus rpoN gene and function of the purified sigma 54 in flagellar gene transcription. Anderson DK; Ohta N; Wu J; Newton A Mol Gen Genet; 1995 Mar; 246(6):697-706. PubMed ID: 7898437 [TBL] [Abstract][Full Text] [Related]
9. The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes. Benson AK; Ramakrishnan G; Ohta N; Feng J; Ninfa AJ; Newton A Proc Natl Acad Sci U S A; 1994 May; 91(11):4989-93. PubMed ID: 8197169 [TBL] [Abstract][Full Text] [Related]
10. Cis- and trans-acting elements required for regulation of flagellar gene transcription in the bacterium Caulobacter crescentus. Mullin DA; Mullin AH Cell Mol Biol Res; 1993; 39(4):361-9. PubMed ID: 8312972 [TBL] [Abstract][Full Text] [Related]
11. Identification of an asymmetrically localized sensor histidine kinase responsible for temporally and spatially regulated transcription. Wingrove JA; Gober JW Science; 1996 Oct; 274(5287):597-601. PubMed ID: 8849449 [TBL] [Abstract][Full Text] [Related]
12. A developmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements. Gober JW; Shapiro L Mol Biol Cell; 1992 Aug; 3(8):913-26. PubMed ID: 1392079 [TBL] [Abstract][Full Text] [Related]
13. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus. Boyd CH; Gober JW J Bacteriol; 2001 Jan; 183(2):725-35. PubMed ID: 11133968 [TBL] [Abstract][Full Text] [Related]
14. Regulation of FlbD activity by flagellum assembly is accomplished through direct interaction with the trans-acting factor, FliX. Muir RE; Gober JW Mol Microbiol; 2004 Nov; 54(3):715-30. PubMed ID: 15491362 [TBL] [Abstract][Full Text] [Related]
15. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell. Jenal U; Shapiro L EMBO J; 1996 May; 15(10):2393-406. PubMed ID: 8665847 [TBL] [Abstract][Full Text] [Related]
16. Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus. Muir RE; Gober JW Mol Microbiol; 2002 Feb; 43(3):597-615. PubMed ID: 11929518 [TBL] [Abstract][Full Text] [Related]
17. Cell cycle control of a holdfast attachment gene in Caulobacter crescentus. Janakiraman RS; Brun YV J Bacteriol; 1999 Feb; 181(4):1118-25. PubMed ID: 9973336 [TBL] [Abstract][Full Text] [Related]
18. Linking structural assembly to gene expression: a novel mechanism for regulating the activity of a sigma54 transcription factor. Dutton RJ; Xu Z; Gober JW Mol Microbiol; 2005 Nov; 58(3):743-57. PubMed ID: 16238624 [TBL] [Abstract][Full Text] [Related]
19. Direct interaction of FliX and FlbD is required for their regulatory activity in Caulobacter crescentus. Xu Z; Dutton RJ; Gober JW BMC Microbiol; 2011 May; 11():89. PubMed ID: 21535897 [TBL] [Abstract][Full Text] [Related]
20. Probing flagellar promoter occupancy in wild-type and mutant Caulobacter crescentus by chromatin immunoprecipitation. Davis NJ; Viollier PH FEMS Microbiol Lett; 2011 Jun; 319(2):146-52. PubMed ID: 21457294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]