BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7959174)

  • 1. Assays using horseradish peroxidase and phenolic substrates require superoxide dismutase for accurate determination of hydrogen peroxide production by neutrophils.
    Kettle AJ; Carr AC; Winterbourn CC
    Free Radic Biol Med; 1994 Aug; 17(2):161-4. PubMed ID: 7959174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometric conversion of oxygen to superoxide anion during the respiratory burst in neutrophils. Direct evidence by a new method for measurement of superoxide anion with diacetyldeuteroheme-substituted horseradish peroxidase.
    Makino R; Tanaka T; Iizuka T; Ishimura Y; Kanegasaki S
    J Biol Chem; 1986 Sep; 261(25):11444-7. PubMed ID: 3017930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of horseradish peroxidase-amplified chemiluminescence produced by human neutrophils reveals a role for the superoxide anion in the light emitting reaction.
    Lock R; Johansson A; Orselius K; Dahlgren C
    Anal Biochem; 1988 Sep; 173(2):450-5. PubMed ID: 2847590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New fluorogenic substrates for horseradish peroxidase: rapid and sensitive assays for hydrogen peroxide and the peroxidase.
    Zaitsu K; Ohkura Y
    Anal Biochem; 1980 Nov; 109(1):109-13. PubMed ID: 7469007
    [No Abstract]   [Full Text] [Related]  

  • 5. A new direct method for determining superoxide dismutase activity by measuring hydrogen peroxide formation.
    Segura-Aguilar J
    Chem Biol Interact; 1993 Jan; 86(1):69-78. PubMed ID: 8381720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress in blood of patients with alcohol-related pancreatitis.
    Szuster-Ciesielska A; Daniluk J; Kandefer-Szerszeń M
    Pancreas; 2001 Apr; 22(3):261-6. PubMed ID: 11291927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased superoxide anion and hydrogen peroxide production by neutrophils and monocytes in human immunodeficiency virus-infected children and adults.
    Chen TP; Roberts RL; Wu KG; Ank BJ; Stiehm ER
    Pediatr Res; 1993 Oct; 34(4):544-50. PubMed ID: 8255691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The amplex red/horseradish peroxidase assay requires superoxide dismutase to measure hydrogen peroxide in the presence of NAD(P)H.
    Mishin V; Heck DE; Laskin DL; Laskin JD
    Free Radic Res; 2020 Sep; 54(8-9):620-628. PubMed ID: 32912004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the luminol-amplified light-generating reaction induced in human monocytes.
    Johansson A; Dahlgren C
    J Leukoc Biol; 1989 May; 45(5):444-51. PubMed ID: 2540257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonphagocytic stimulation of human polymorphonuclear leukocytes: role of the plasma membrane.
    Goldstein IM; Weissmann G
    Semin Hematol; 1979 Jul; 16(3):175-87. PubMed ID: 225827
    [No Abstract]   [Full Text] [Related]  

  • 11. Reactions of myeloperoxidase with superoxide and hydrogen peroxide: significance for its function in the neutrophil.
    Winterbourn CC; Kettle AJ
    Basic Life Sci; 1988; 49():823-7. PubMed ID: 2855005
    [No Abstract]   [Full Text] [Related]  

  • 12. A photochemical system for generating free radicals: superoxide, phenoxyl, ferryl and methyl.
    Prolla TA; Mehlhorn RJ
    Free Radic Res Commun; 1990; 9(2):135-46. PubMed ID: 2161388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of H2O2 production in porcine thyroid cells: evidence for intermediary formation of superoxide anion by NADPH-dependent H2O2-generating machinery.
    Nakamura Y; Makino R; Tanaka T; Ishimura Y; Ohtaki S
    Biochemistry; 1991 May; 30(20):4880-6. PubMed ID: 1645182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of hydrogen peroxide production by phagocytes using homovanillic acid and horseradish peroxidase.
    Baggiolini M; Ruch W; Cooper PH
    Methods Enzymol; 1986; 132():395-400. PubMed ID: 3547021
    [No Abstract]   [Full Text] [Related]  

  • 15. Rapid microassays of phagocytosis, bacterial killing, superoxide and hydrogen peroxide production by human neutrophils in vitro.
    Rajkovic IA; Williams R
    J Immunol Methods; 1985 Apr; 78(1):35-47. PubMed ID: 2984293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human tumor necrosis factor is a potent activator of the oxidative metabolism in human polymorphonuclear neutrophilic granulocytes: comparison with human lymphotoxin.
    Kapp A; Zeck-Kapp G; Blohm D
    J Invest Dermatol; 1989 Mar; 92(3):348-54. PubMed ID: 2537365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reactions of horseradish peroxidase, lactoperoxidase, and myeloperoxidase with enzymatically generated superoxide.
    Metodiewa D; Dunford HB
    Arch Biochem Biophys; 1989 Jul; 272(1):245-53. PubMed ID: 2544142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diminished neutrophil function in Crohn's disease and ulcerative colitis identified by decreased oxidative metabolism and low superoxide dismutase content.
    Verspaget HW; Peña AS; Weterman IT; Lamers CB
    Gut; 1988 Feb; 29(2):223-8. PubMed ID: 2831119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloperoxidase-dependent generation of a tyrosine peroxide by neutrophils.
    Winterbourn CC; Pichorner H; Kettle AJ
    Arch Biochem Biophys; 1997 Feb; 338(1):15-21. PubMed ID: 9015382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase.
    Kettle AJ; Gedye CA; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):2003-10. PubMed ID: 8390258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.